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We address the problem of synthesizing physical animations that can loop seamlessly. We formulate a

variational approach by deriving a physical law in a periodic time domain. The trajectory of the animation is

represented as a parametric closed curve, and the physical law corresponds to minimizing the bending energy

of the curve. Compared to traditional keyframe animation approaches, our formulation is constraint-free,

which allows us to apply a standard Gauss–Newton solver. We further propose a fast projection method to

efficiently generate an initial guess close to the desired animation. Our method can handle a variety of physical

cyclic animations, including clothes, soft bodies with collisions, and N-body systems.
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1 INTRODUCTION

Fig. 1. A phenakistoscope by

Eadweard Muybridge [1892].

Cyclic animations are short animations that can be played in loops.

They have existed since the early history of animations in the form

of phenakistoscopes (Fig. 1). Looping animations continue to draw

great interest in modern days for video games and movies.
1
They

also play a central role in keyframe-controlled animations [Barbič

et al. 2009], and designing characters’ and animatronics’ cyclic

motion such as walking [Nunes et al. 2012; Mordatch et al. 2013;

Starke et al. 2022].

We aim to produce cyclic animations of physical systems. The

animation should locally approximate the physical laws of motion,

and globally loop back seamlessly (Fig. 2). In particular, we aim to

reduce the number of user inputs, such as keyframes for guiding

the animation [Barbič et al. 2009]. Our problem setting poses new challenges: while fewer keyframe

fidelity constraints leave more room for chaotic physical systems to develop a larger variety of

interesting motions, it produces worse control gradients evaluated by the common adjoint methods.

1
There are several video tutorials on Youtube for generating looping animation (link, link, and link).
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Fig. 2. Flag post. Given a physical system with an initial condition (top), our method synthesizes a physical

animation (bottom) that can loop back seamlessly, such that the end frame would be the same as the initial

frame. Here we show a cyclic animation of a flag under the wind.

We describe a variational approach to generate physical cyclic animations. The cyclic simulation

is represented as a parameterized closed curve (loop) in the configuration space of the physical

system (Fig. 3). The physical law assigns to each configuration point an associated acceleration

of the trajectory. A trajectory passing through a point with a different acceleration is similar to

a bent curve which gives rise to a cost of bending energy. Using this interpretation of a residual

force minimization problem, we model our cyclic physical simulation as a closed curve of minimal

total bending energy. Users can specify initial conditions (positions/velocities at the starting frame)

either as soft or hard constraints of specific points of the loop.

Our closed curve parameterization guarantees a cyclic animation. Moreover, the resulting mini-

mization problem is essentially unconstrained, in which case many optimization methods directly

apply. We present a fast projection method for an initial guess followed by a Gauss–Newton method
to obtain the optimal solution. Our optimization can often overcome the challenges caused by the

non-linear constraints when applying the classical shooting method to a chaotic system (Fig. 3).

We show results on a variety of physical systems with a moderately large degrees of freedom ,

including thin shell models, hyperelastic finite element models with contact, and N-body simulation

(see Section 5).

Comparing with the conventional key-frame animation control methods, we highlight:

• We build the cyclic constraint in the topology of trajectory, leaving an essentially uncon-
strained optimization problem.
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Fig. 3. For a chaotic dynamical system, a direct gradient descent method for the optimal control problem

(9) often diverges due to the amplification in the sensitivity propagation (b). Our method (c) overcomes the

problem by treating the time domain as a closed loop and avoiding using gradient descent for the initial

guess.

• In the traditional optimal control approach, the gradient descent can be unstable or inefficient

since the trajectory can be sensitive to control force in a general dynamical system.We replace

the gradient descent procedure with a more efficient and robust fast projection method.

• The heuristic fast projection is backed by a Gauss–Newton solve that seeks a local minimum.

The method works even for chaotic dynamical systems where traditional gradient-based

optimal control fails.

2 RELATEDWORK
Some current practice for generating physical looping animations is to interpolate between states

of the end frame and the initial frame, or to resort to non-physical periodic motions such as a

sine wave (Footnote 1). These approaches guarantee cyclic animations, at the cost of producing

less physical motion. Some approaches solve partial differential equations with periodic boundary

conditions using spectral methods [Castro et al. 2010].

Spacetime constraints. Our method belongs to the methods of spacetime constraints [Witkin and

Kass 1988]. These methods specify the initial and end conditions (the keyframes) and find the most

physically accurate trajectories that satisfy the conditions by applying control forces. In its general

form, spacetime constraints involve non-convex optimization with non-linear constraints. Prior

work has demonstrated the use of spacetime constraints to generate periodic motions [Barbič et al.

2009; Wampler and Popović 2009; Nunes et al. 2012; Schulz et al. 2014].

While spacetime constraints can be solved using techniques such as gradient descent and

sequential quadratic programming, meeting the non-linear constraints is hard. The optimization

becomes especially challenging when the keyframes are distant apart, leaving long time intervals

that can support chaotic dynamics.
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To address the challenges in optimization and provide user control, previous work employed

several strategies. First, multiple keyframes are often used to further constrain the animation. Next,

the non-linear optimization is often projected to a lower-dimensional subspace [Barbič et al. 2009] or

converted into a linear system [Huang et al. 2011; Barbič et al. 2012; Hildebrandt et al. 2012; Li et al.

2014; Schulz et al. 2014]. Alternatively, some work applies derivative-free optimization [Wampler

and Popović 2009; Nunes et al. 2012].

Our method targets degrees of freedom higher than usual optimal control approaches (e.g., we

optimize for control forces on each vertex of a cloth), while focusing on the case where the only

constraints are that the animation should loop back and be as physical as possible. Our method

does not require additional keyframes (other than the initial condition), subspace projection, or

linearization, that could sacrifice the physics. This is enabled by our constraint-free reformulation

of the spacetime constraints problem and our Gauss–Newton optimization, whereas previous work

still needs to meet the constraints even with the aforementioned remedies. On the other hand, we

leave having more user controls as future work.

Shooting methods and optimal control. A common way of solving spacetime constraints in graph-

ics is the shooting method [Betts 1998]: given a forward simulation, the constrained optimization

is solved using the derivatives with respect to the control forces [Popović et al. 2003; Treuille et al.

2003; Wojtan et al. 2006]. The derivatives are often computed by the adjoint method [Johnson

2012], which shares similar computational efficiency to backpropagation or reverse-mode auto-

matic differentiation. Some recent differentiable physics work also belong to this category [de Avila

Belbute-Peres et al. 2018; Hu et al. 2020; Du et al. 2021], as well as work on trajectory optimiza-

tion [Zimmermann et al. 2019], physical design [Zehnder et al. 2021], and fluid control [McNamara

et al. 2004; Pan et al. 2013; Tang et al. 2021].

Cyclic animation can also be solved using the shooting method, by placing a constraint on

the ending state. Prior work that demonstrates periodic motions using spacetime constraints

often solves the optimization using the shooting method [Barbič et al. 2009; Schulz et al. 2014].

However, meeting the non-linear constraints through optimizing control forces is challenging.

Another class of optimal control methods, direct collocation [Hargraves and Paris 1987; Posa et al.

2014], optimizes for both the control forces and trajectory, but they still need to handle non-linear

constraints. We show that shooting methods, when used for generating cyclic animations, can

violate the constraints and produce non-smooth “jumps” in the animation. Our method optimizes

only the trajectory, making it trivial to satisfy the constraints, and can be used in conjunction with

the shooting methods to improve their results.

Image/video-basedmethods. Somemethods directly process videos to generate infinite loops [Schödl

et al. 2000; Schödl and Essa 2002; Liao et al. 2013; He et al. 2017; Härkönen et al. 2022]. Among this

class of methods, some use physically-inspired periodic motion to produce cyclic videos [Chuang

et al. 2005; Davis et al. 2015]. We instead directly operate on the 3D physical states.

Data-driven motion synthesis. Some recent work applies data-driven techniques to synthesize

a variety of (potentially periodic) motions from examples [Starke et al. 2022; Li et al. 2022]. We

focus on physics-based approaches, and leave the combination between our work and data-driven

methods as future work.
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3 FORMULATION
Our goal is to formulate a physical law on a periodic time domain. We consider physical systems

whose equations of motion take the form:

M¥q(𝑡) = F(q(𝑡)), 𝑡 ∈ R, q(𝑡) ∈ R𝑚, (1)

where R𝑚 represents the physical configuration space,
2 M = (𝑀𝛼𝛽 ) ∈ R𝑚×𝑚 the mass, and F a

known force law. Our problem of producing a cyclic animation takes a set of desired initial values

q(0) = r0, ¤q(0) = v0 and a time period 𝑇 > 0 as inputs.

To model temporal periodicity, we let the domain of time be the periodic interval [0,𝑇 ), which
we denote by the quotient space

S1

𝑇
B R/(𝑇Z) i.e. 𝑡 ≡ 𝑡 +𝑇𝑛 in S1

𝑇
for all 𝑡 ∈ R, 𝑛 ∈ Z. (2)

We consider only those continuous paths q : S1

𝑇
→ R𝑚 in the configuration space parameterized by

this cyclic time domain. Define the feasible set as the vector space of parameterized closed curves

(Fig. 3)

V =
{
q : S1

𝑇
→ R𝑚

}
. (3)

For each closed curve q ∈ V we define the energy

E : V → R, E[q] B
∮
S1

𝑇

𝑊 (q(𝑡), ¥q(𝑡)) 𝑑𝑡, (4)

where the integrand 𝑊 is a “bending energy” for the curve that measures its deviation from

satisfying the physical system (1)

𝑊 : R𝑚 × R𝑚 → R, 𝑊 (q, a) B 1

2
|Ma − F (q) |2M−1

, (5)

where |u|2M−1
B u⊺M−1u. Such a least-squares formulation follows Gauss’ principle of least

constraint [Gauß 1829; Hildebrandt et al. 2012].

3.1 Optimization problems
Our main optimization problem is to find q ∈ V that solves

min

q∈V

(
L[q] B E[q] + 1

2𝜖
|q(0) − r0 |2M +

1

2𝜖 ′ | ¤q(0) − v0 |2M
)
. (6)

Here, 𝜖, 𝜖′ are parameters that control how much we desire the fidelity for the initial values.

When 𝜖, 𝜖′ → 0, these “soft” initial conditions become hard linear constraints. In this limit, the

feasible set reduces to the affine subspace

Vr0, ¤v0
B

{
q ∈ V

�� q(0) = r0, ¤q(0) = v0

}
, (7)

over which we solve

minimize

q∈Vr
0
,v

0

E[q] . (8)

2
This could be a discretization of a continuum.
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Fig. 4. Starting with a forward simulation of a 3-body system (a), we compare solving the optimal control

problem (9) with non-linear constraints, using soft constraints (b), and projected gradient descent (c). The

figure visualizes the trajectories. Projected gradient descent only converged for 9% of the initial conditions in

our randomized trials: here we show the rare case where it converges. Our constraint-free formulation allows

us to generate better seamless and physical animations (d) compared to the traditional methods based on

solving non-linear constraints.

3.2 Relation to optimal control
With a substitution u = M¥q − F(q), our optimization is equivalent to an optimal control problem:

minimize

q,u : [0,𝑇 ]→R𝑚

∫ 𝑇

0

1

2
|u(𝑡) |2M−1

𝑑𝑡

subject to


M¥q(𝑡) = F(q(𝑡)) + u(𝑡) for all 𝑡 ∈ (0,𝑇 )
q(0) = q(𝑇 ) = r0

¤q(0) = ¤q(𝑇 ) = v0 .

(9)

The optimizer u is the minimal control force added to the system (1) to guide q to meet the constraints

at 𝑡 = 𝑇 .

Remark 1. Although the optimal control problem (9) is equivalent to the unconstrained problem (8)

by variable substitution, the non-linear physical constraint M¥q = F(q) + u makes satisfying the cyclic
constraints much more difficult. Constraint violation is not tolerable for seamless cyclic animation.
Constrained optimization, such as Lagrange multipliers or soft constraints with gradient descent, works
well for small time intervals with monotonic motion. Such control becomes much more difficult for
animation over a long time interval that supports complex physical motions. In practice, for the optimal
control approach to work robustly, one adds multiple keyframes throughout the animation interval
(rather than just an initial condition) [Barbič et al. 2009]; however, each additional keyframe constraint
can sacrifice the physics. Our method builds cyclicity into the problem and removes the cyclic constraint
from optimization.
Our experiments (Fig. 4c) show that solving (9) with projected gradient descent or Lagrange

multipliers usually leads to divergent iterations with increased loss and violated constraints [Platt

and Barr 1988]. It is possible to relax the constraints q(0) = q(𝑇 ) and ¤q(0) = ¤q(𝑇 ) into soft

constraints [Zehnder et al. 2021; Du et al. 2021], but this can lead to a sudden jump between the end

and initial states (Fig. 4b). Optimizing soft constraints also requires extensive parameter tuning.

4 METHOD
We develop an algorithm to solve the variational problem (6). We discretize the periodic time

domain and formulate the discrete counterpart of the optimization (6) (Section 4.1), which we solve

iteratively using the Gauss–Newton method (Section 4.2) with an efficient initial guess (Section 4.3).
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We use index notation to specify the components of the variable. An element 𝑞
(𝑛)
𝑗𝛼

is the scalar

value of the 𝛼-th component of the physical configuration at time step 𝑗 at optimization iteration 𝑛.

We use boldface q𝑗 = (𝑞 𝑗0, 𝑞 𝑗1, · · · , 𝑞 𝑗,𝑚−1) ∈ R𝑚 to denote the physical state at time step 𝑗 .

4.1 Discretization
We discretize the temporal domain (2) uniformly into 𝑁 nodes

𝑡 𝑗 B
𝑗𝑇

𝑁
, 𝑗 ∈ Z𝑁 = {0, 1, · · · , 𝑁 − 1}. (10)

We use arithmetic modulo 𝑁 on the index 𝑗 ∈ Z𝑁 , and denote time step size by ℎ = 𝑇/𝑁 . Under this
time-discretization the collection of closed curves (3) becomes a finite-dimensional vector space

𝑉 =
{
q = (𝑞 𝑗𝛼 )

�� 𝑗 = 0, · · · , 𝑁 − 1, 𝛼 = 0, · · · ,𝑚 − 1

}
= R𝑚𝑁 . (11)

We define the operator that takes the second partial derivative with respect to time

𝚫 : R𝑚𝑁 → R𝑚𝑁 , (𝚫q) 𝑗𝛼 B 1

ℎ2
(𝑞 𝑗+1,𝛼 − 2𝑞 𝑗,𝛼 + 𝑞 𝑗−1,𝛼 ). (12)

Using this operator we define the discrete version of the total loss function (4) into a functional

𝐸 : 𝑉 → R. We have two options of the discrete loss function depending on the time integration

scheme:

𝐸back [q] B
∑

𝑗∈Z𝑁 ℎ𝑊
(
q𝑗+1, (𝚫q) 𝑗

)
(13a)

=
∑

𝑗∈Z𝑁
ℎ
2

��M(𝚫q) 𝑗 − F(q𝑗+1)��2M−1
(13b)

and

𝐸symp [q] B
∑

𝑗∈Z𝑁 ℎ𝑊
(
q𝑗 , (𝚫q) 𝑗

)
(14a)

=
∑

𝑗∈Z𝑁
ℎ
2

��M(𝚫q) 𝑗 − F(q𝑗 )��2M−1
(14b)

The difference between (13) and (14) corresponds to the two time integration schemes: backward

Euler uses the force F(q𝑗+1) for the acceleration (𝚫q) 𝑗 , where as symplectic Euler uses F(q𝑗 ).3 With

the discrete energy ((13) or (14)), our main optimization problem (6) becomes

min

q∈V

(
𝐿[q] B 𝐸 [q] + 1

2ℎ3𝜖0

|q0 − r0 |2M +
1

2ℎ3𝜖1

|q1 − r1 |2M
)
. (15)

We add ℎ3
factor in the denominator to balance the units. The desired initial positions r0, r1 and

the penalty parameters 𝜖0, 𝜖1 are prescribed by the user. In our discretization, the velocity ¤q(0) is
discretized using finite difference

q1−q0

ℎ
. In the following, we stick with the symplectic energy (14).

Converting to backward Euler is straightforward.

4.2 Optimization with Gauss–Newton method
We seek the minimum of (15) iteratively by the Gauss–Newton method, which is suitable for our

loss function as a sum of squares∑
𝑗∈Z𝑁

ℎ
2

��M(𝚫q) 𝑗 − F(q𝑗 )��2M−1
+ 1

2ℎ3𝜖0

|q0 − r0 |2M +
1

2ℎ3𝜖1

|q1 − r1 |2M. (16)

3
The choices for the arguments of𝑊 ensure that the absolute zero energy state𝑊 (q𝑗+1, (𝚫q) 𝑗 ) = 0 (resp.𝑊 (q𝑗 , (𝚫q) 𝑗 ) = 0)

is equivalent to the commonly employed backward (resp. symplectic) Euler time integration [Baraff and Witkin 1998]

backward

{
q𝑗+1 = q𝑗 + ℎv𝑗+1
v𝑗+1 = v𝑗 + ℎM−1F(q𝑗+1 ) ;

symplectic

{
q𝑗+1 = q𝑗 + ℎv𝑗+1
v𝑗+1 = v𝑗 + ℎM−1F(q𝑗 ) .
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Equation (16) can be written as a quadratic form:

𝐿[q] = 1

2
u⊺Bu + 1

2
g⊺Cg, (17)

where B = ℎ

[
M−1

. . .
M−1

]
, C = 1

ℎ3

[
M/𝜖

0

M/𝜖
1

]
, u : 𝑉 → 𝑉 defined by

u𝑗 [q] B M(𝚫q) 𝑗 − F(q𝑗 )
= 1

ℎ2
(Mq𝑗−1 − 2Mq𝑗 +Mq𝑗+1) − F(q𝑗 ), 𝑗 ∈ Z𝑁 , (18)

and g : 𝑉 → R2𝑚
by

g[q] =
[
q0 − r0

q1 − r1

]
. (19)

4.2.1 Gauss–Newton method. A Gauss–Newton method is a quasi-Newton method that uses a

specific approximation of the Hessian of the loss function. The gradient of our loss function is

given by

𝜕
𝜕q𝐿 = J⊺Bu + K⊺Cg, (20)

where J = 𝜕u
𝜕q and K =

𝜕g
𝜕q are the Jacobians of (18) and (19) respectively (see Section 4.2.2 for the

explicit formulas). In a Gauss–Newton method, one takes the semi-positive definite approximation

for the Hessian

Hess𝐿 ≈ �Hess𝐿 B J⊺BJ + K⊺CK. (21)

This yields the following quasi-Newton algorithm.

Algorithm 1:Main algorithm

input: Initial guess q(0) from Algorithm 2

1 while |q(𝑛+1) − q(𝑛) | < 𝜖 do
2 Evaluate u, g, J = 𝜕u

𝜕q and K =
𝜕g
𝜕q at q(𝑛) ⊲ (18), (19)

3 𝜕𝐿
𝜕q ← J⊺Bu + K⊺Cg ⊲ (20)

4 �Hess𝐿 ← J⊺BJ + K⊺CK ⊲ (21)

5 𝛿q← Solve

(�Hess𝐿 𝛿q = − 𝜕𝐿
𝜕q

)
⊲ quasi-Newton step

6 q(𝑛+1) ← q(𝑛) + 𝑠𝛿q ⊲ 𝑠 ∈ (0, 1) given by line search.
7 end
output :q(𝑛) in the last iteration

One can use standard methods to solve the linear system in Step 5. Our current implementation

uses a Cholesky decomposition.

4.2.2 Jacobians of the residual forces. The Jacobian J = 𝜕u
𝜕q of the residual force (18) is given by

(Jq̊) 𝑗 = 1

ℎ2
(Mq̊𝑗−1 − 2Mq̊𝑗 +Mq̊𝑗+1) − H𝑗 q̊𝑗 , 𝑗 ∈ Z𝑁 (22)

for all variation q̊ ∈ 𝑉 , where

H𝑗 B −∇F(q𝑗 ) ∈ R𝑚×𝑚, 𝑗 ∈ Z𝑁 , (23)

is the negative gradient of the force law evaluated at configuration q𝑗 ∈ R𝑚 . If F is a conservative

force F = −∇𝑈 arising from a potential energy 𝑈 : R𝑚 → R, then H𝑗 = Hess𝑈 |q𝑗 . The Jacobian
K =

𝜕g
𝜕q of (19) is given by Kq̊ =

[
q̊0

q̊1

]
.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article . Publication date: August 2023.
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u(𝑘 )

u(𝑘+1) 𝐻 (𝑘 )

{𝐺 = 0}

𝐺 [u]

u(0) = 0

Fig. 5. Fast projection finds a point on the constraint manifold {𝐺 = 0} that is close to the initial guess

u(0) = 0. The method iteratively linearizes the constraint function and project the iterand u(𝑘 ) to the zeros
𝐻 (𝑘 ) .

4.2.3 Hard position constraints. When 𝜖0, 𝜖1 → 0 or when there are boundary conditions in the

physical system, the values of 𝑞 𝑗𝛼 are prescribed and fixed during optimization for a subset of

( 𝑗, 𝛼) ∈ Z𝑁 ×Z𝑚 . In the presence of such hard position constraints, we simply remove the prescribed

𝑞 𝑗𝛼 ’s from the set of unknown variables. This procedure reduces the size of the matrix �Hess𝐿, and,

in the case of 𝜖0, 𝜖1 = 0, removes the stiff term K⊺CK.

4.3 Initial guess with fast projection
For the initial guess for Algorithm 1, we construct a heuristic q(0) that is close to being cyclic

and physical. To achieve this, we solve an approximate solution to the control problem (9). Define

a functional q that maps a control force u to the solution to the initial value problem (forward

simulation)

q[u] B Solution to

{
M(𝚫q) 𝑗 = F(q𝑗 ) + u𝑗 , 𝑗 = 1, . . . , 𝑛

q0 = r0, q1 = r1.
(24)

With this substitution, we rewrite (9) as

minimize

u
1

2

∑𝑛
𝑗=1
|u𝑗 |2 subject to 𝐺 [u] = 0, (25)

where

𝐺 [u] = 1

2
|q[u]𝑛 − r0 |2 + 1

2
|q[u]𝑛+1 − r1 |2 . (26)

We apply the fast projection method [Goldenthal et al. 2007; Dinev et al. 2018] to find a point on the

constraint manifold {𝐺 = 0} close to the origin as an approximate solution to (25). As illustrated in

Fig. 5, the method starts with u(0) = 0 and iteratively updates

u(𝑘+1) = 𝒫𝐻 (𝑘 ) (u(𝑘 ) ) (27)
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with the orthogonal projection𝒫𝐻 (𝑘 ) onto the zero-hyperplane 𝐻 (𝑘 ) of the linearized constraint

functional at u(𝑘 ) :

𝐻 (𝑘 ) =
{
u
��𝐺 [u(𝑘 ) ] + ∇𝐺 |u(𝑘 ) (u − u(𝑘 ) ) = 0

}
. (28)

The stepping 𝛿u = u(𝑘+1) − u(𝑘 ) is perpendicular to the hyperplane 𝐻 (𝑘 ) and therefore

𝛿u = −𝜆∇𝐺 |⊺
u(𝑘 )

, (29)

where 𝜆 ∈ R is a scalar multiplier.

The projection step (27) thus amounts to solving[
𝐼 ∇𝐺 |⊺

u(𝑘 )
∇𝐺 |u(𝑘 ) 0

] [
𝛿u
𝜆

]
= −

[
0

𝐺 [u(𝑘 ) ]

]
. (30)

We can solve the linear system efficiently: observe (by Gauss elimination) that 𝜆 = 𝐺/|∇𝐺 |2, and
therefore we can evaluate 𝛿u = −𝜆∇𝐺 = − 𝐺

|∇𝐺 |2∇𝐺 explicitly. We evaluate ∇𝐺 by the standard

adjoint method or reverse-mode automatic differentiation [Johnson 2012]. The overall process of

finding an initial guess only adds little computational overhead. We summarize our algorithm for

finding an initial guess below.

Algorithm 2: Fast projection for an initial guess for Algorithm 1

1 u(0) ← 0
2 for 𝑘 = 0, 1, 2, . . . do
3 Evaluate 𝐺 , ∇𝐺 at u(𝑘 ) ⊲ forward sim. and back propagation

4 𝛿u← (𝐺/|∇𝐺 |2)∇𝐺 ⊲ solves (30)

5 u(𝑘+1) ← u(𝑘 ) + 𝛿u
6 end
output :q(0) ← Solve (24). ⊲ forward simulation

Remark 2. The fast projection (30) is an approximation of the projected gradient descent method by
assuming both the control force and the Lagrange multiplier are zero. This relaxation helps stabilizing
the optimization when the system is less stiff. As a cautionary note, the iteration could diverge when
the required control force is large and the approximation is no longer adequate.

5 RESULTS
We demonstrate that our algorithm generates physical cyclic animations for various physical

systems, including N-body systems, cloth simulation under externally driven forces or periodic

boundary conditions, and soft body simulation with contact. We then evaluate the effectiveness

of fast projection as the initial guess. We also show one example where fast projection fails, but

Gauss–Newton solver can still generate physical cyclic animation by taking forward simulation as

an initial guess.

For cloth and soft body simulation, we adopt the finite element implementation from the C-IPC

codebase [Li et al. 2021]. We also implement penalty-based collision with external objects. We use

CHOLMOD [Chen et al. 2008] for its linear solvers and OpenMP for parallel computing. All related

experiments are run on a 2.3 GHz 8-Core Intel Core i7-11800H CPU with 32 GB memory. Apart

from that, we implement the N-body example in Python and execute it on an 8-Core Apple M1

and 8 GB memory. We use symplectic integration in N-Body and implicit integration in cloth and

soft body simulation for stability. We report the experiment details and optimization run time in

Table 1. A time step of 10 ms is used in all of the experiments.
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(a) Physical (b) Cyclic (ours)

Fig. 6. N-body. A 5-body system of equal mass interacting under mutual gravity. Physically, the system

evolves in a chaotic manner (left). Our proposed method allows for synthesizing a realistic cyclic animation

(right). The trajectories of forward simulation experience a jump (visualized in dashed lines), whereas our

method loops back to the initial orbit.

Table 1. Performance and statistics.

Name Vertices Elements Frames

Iteration Avg. time (s)

FP GN FP GN

Flag post (Fig. 2) 174 300 100 24 246 5.6 11.2

N-body (Fig. 6) 5 - 200 - 80 - 0.16

Ribbons (Fig. 7) 243 243 100 96 156 2.1 2.7

Bouncing doughnut (Fig. 8) 281 990 60 19 86 2.3 33.8

Wobbly bar (Fig. 10) 133 390 250 19 82 6.5 11.1

Swinging cloth (Fig. 11) 121 200 200 97 17 3.7 8.6

Twisting bar (Fig. 12) 133 390 100 - 59 - 5.4

5.1 N-body system
A number (N) of celestial bodies interacting under Newton’s gravity often results in chaotic

dynamics (for N ≥ 3) [Barrow-Green 1997]. Seeking time-periodic solutions in an N-body system

has been a computationally challenging problem in astronomy [Li and Liao 2019]. Despite the

chaotic nature of the physical system, our algorithm can generate close-to-physical time-periodic

solutions with relatively small computational cost.

As shown in Fig. 6, a physical simulation of an N-body problem by solving an initial value

problem (left) is unlikely to be close to cyclic. Our method simulates the system while guaranteeing

time periodicity. The trajectories of the 5 bodies form 5 interlinking rings.

5.2 Cloth
We demonstrate cyclic cloth simulations using a thin shell [Grinspun et al. 2003] with bending

energy and Neo-Hookean membrane energy using the physical material parameters of 100% cotton.

5.2.1 Flag Post. Fig. 2 shows an animation of a rectangular flag with two fixed corners. In addition

to the elastic forces, we add a wind force proportional to the dot product between the surface

normal and a constant wind vector.
4
To get natural starting positions, we run forward simulation

and use the configurations from the 60
th
and 61

st
frame to set r0 and r1 respectively. Forward

simulations with this setup yield a physics-based animation of a waving flag (Fig. 2 left), but the

4
A constant wind vector is a simplified model compared to more accurate models involving turbulent flow surrounding the

flag.
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(b) Cyclic (ours)

(a) Physical

Frame 99 Frame 0 Frame 30 Frame 80

Frame 99 Frame 0 Frame 30 Frame 80

Fig. 7. Ribbons. A rotating point handle is driving three ribbons. The handle orbits in a circular motion and

circles 3 times in 100 frames. The forward simulation produces an end state (Frame 99) that significantly

differs from the initial state (Frame 0).

animation generally does not repeat. Our initial guess (Section 4.3) finds a plausible solution, but

still exhibits an unnatural jump at the end. Optimizing using our method from the initial guess

finds a physically realistic cyclic animation that shows no visual artifact.

5.2.2 Ribbons. Fig. 7 shows an animation of narrow strips of thin shell approximating anisotropic

elastic rods [Bergou et al. 2008]. We attach three ribbons to a point handle which orbits in cyclic

motion. Even with such a time-periodic external influence, the forward simulation fails to loop

back. Our method is able to produce a natural motion of ribbons that also loops back seamlessly.

5.3 Soft body with collision
We apply our method to soft body simulation with collision. We adopt a penalty-based contact

model with the floor and sphere [Macklin et al. 2020].

5.3.1 Bouncing Doughnut. As shown in Fig. 8, we setup a doughnut-shaped soft body with a

downward velocity at frame 0. In the forward simulation, the body bounces off to a different course

after its collision with the ground and never loops back. With our initial guess, the body manages

to loop back to its initial position. However, this approximated solution still suffers from a large

virtual acceleration around the last frames, which yields artifacts in video playback. This is also

visible as a discontinuity in the velocity curve (Fig. 9). Our optimal solution produces a natural
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Fig. 8. Bouncing Doughnut. Our method can be applied to soft body simulation with contact. Our initial

guess generates an animation that almost loops back, at the cost of losing some momentum due to a large

control force, making it not bounce as high. Our optimization produces a seamless loop, while preserving the

momentum.

cyclic animation. The soft body bounces up to the correct height (frame 40), from which it falls

back to the initial position, matching the velocity of the initial frame. Fig. 9 shows the vertical

component of the center of mass plotted against time. The physical forward simulation loses the

vertical momentum as it is transferred to an angular one upon collision. The fast projection is not

able to restore this loss of vertical momentum. Our method restores the vertical momentum and

successfully loops back in both position and velocity.

5.3.2 Wobbly bar. In Fig. 10, we show a scripted rigid ball moving through the scene in constant

velocity and colliding with an elastic bar. The elastic bar is initialized from the rest shape. This is a
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Fig. 9. The vertical position and velocity of the center of mass of the soft body in Fig. 8 plotted against time.

The forward simulation exhibits a discontinuous jump at time 0. Our initial guess (fast projection) reduces

the jump, but loses the vertical momentum. After the Gauss–Newton optimization, our method restores the

momentum, while maintaining a seamless physical cyclic animation.
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(
o
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s
)

Frame 249 Frame 0 Frame 150 Frame 200

Fig. 10. Wobbly bar. Under the influence of a colliding sphere with an elastic bar, the physical simulation

does not loop back to its initial state (top row). Our method generates a natural cyclic animation in this

challenging scenario (bottom row).

challenging scenario with large deformation and a long time interval. The forward simulation fails

to loop back, while our method generates natural and seamless animation.

5.4 Evaluation
5.4.1 Swinging cloth. Here we compare fast projection with gradient descent in solving keyframe

control problems and evaluate their role as initial guesses. We found that directly solving (9) using

projected gradient descent usually diverges. Instead, previous spacetime constraintsmethods [Barbič

et al. 2009; Wojtan et al. 2006] often relax the cyclic constraints in (9) as soft constraints and solve

it using gradient-based optimization. The experiment setting and convergence plot are shown in

Fig. 11. The animation consists of one piece of cloth swinging down from a flat stationary state

under gravity. The input forward simulation contains one swing period. The cloth can not return

to the initial height because of the damping effect introduced by implicit Euler. Both optimization

schemes start from zero control force. We can see from Fig. 11 (b) and Fig. 11 (c) that fast projection

achieves lower constraint loss and significantly smaller control force. Visually, the animation looks
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Fig. 11. Swinging cloth. A piece of cloth swings back and forth from a horizontal initial state. The dynamics

under physical simulation show that the system does not naturally loop back. By optimizing using gradient

descent and fast projection, the dynamics can be forced to loop back, as shown in (a). The fast projection

method shows better convergence in both terms of the loss functions, as shown in (b) and (c). In (d) we show

our Gauss–Newton optimization with the three initial guesses: fast projection converges to the lowest loss in

this case.

smooth and more natural than the gradient descent. From the good initial guess produced by fast

projection, our Gauss–Newton solver converges to better local minimum Fig. 11 (d). Interestingly,

if we ignore the initial state constraint in our formula by setting 𝜖 = +∞, the final solution is a nice

energy-preserving animation.

5.4.2 Twisting bar. As mentioned in Remark 2, fast projection tends to fail when the required

control force is large. Here we show an elastic bar releasing from a twisted initial state (Fig. 12). In

this challenging large deformation scenario, fast projection quickly diverges, and gradient descent

also fails to make progress. However, our Gauss–Newton step can still generate seamless cyclic

animation using forward simulation as the initial guess.
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Fig. 12. Twisting bar. An elastic bar is initialized in a twisted state. The forward simulation gradually returns

to the rest state (top row). In this case, the fast projection method fails to enforce the cyclic constraint, and

as such is not a good choice for the initial guess. By using the physical simulation as the initial guess, the

Gauss–Newton solver generates a cyclic animation (bottom row).

6 LIMITATIONS AND FUTUREWORK
Self-collision. Although we integrated our method with a penalty-based contact model to include

collision objects in simulations, we have not attempted to address self-collisions in our method.

Damping. Both our continuous and discrete physical systems are always Lyapunov-stable due to

their cyclic nature. However, since we do not put constraints on the kinetic energy of the system, it

is possible that the system arrives at a more damped solution compared to the initial, non-cyclic

trajectory. A different loss function that enables more control can potentially resolve the problem.

Scalability. Our Gauss–Newton solver requires us to invert the Hessian matrix (21) with size

(𝑚 × 𝑁 )2. While our current implementation uses a direct Cholesky decomposition for inversion,

it is likely that a more efficient solver can be designed to solve a larger Hessian matrix by exploiting

its structure.

7 CONCLUSION
We propose a constraint-free formulation for physical cyclic animations, allowing us to synthesize

seamless looping animation without solving non-linear constraints. Our formulation is general and

can handle a variety of physical systems.
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