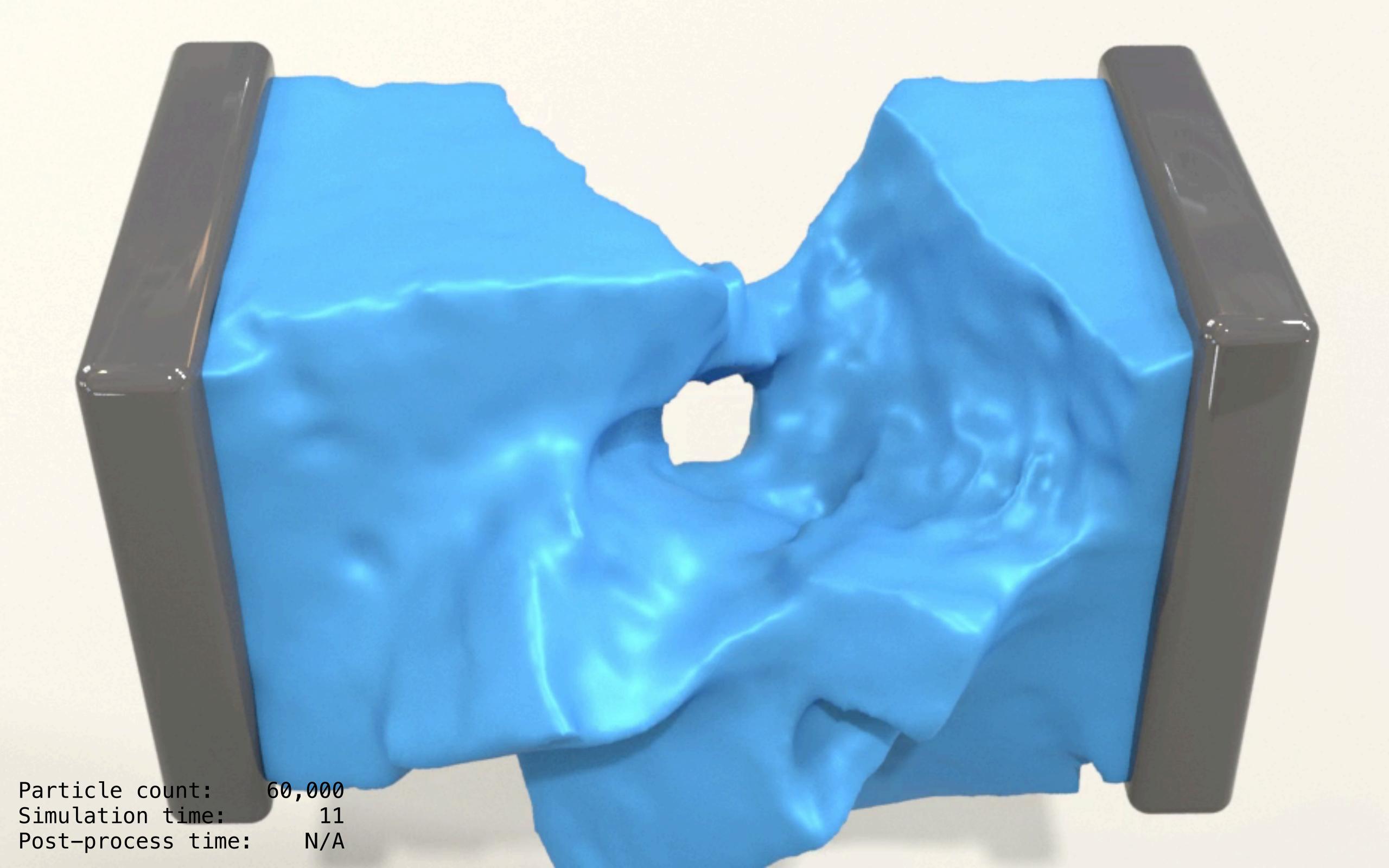


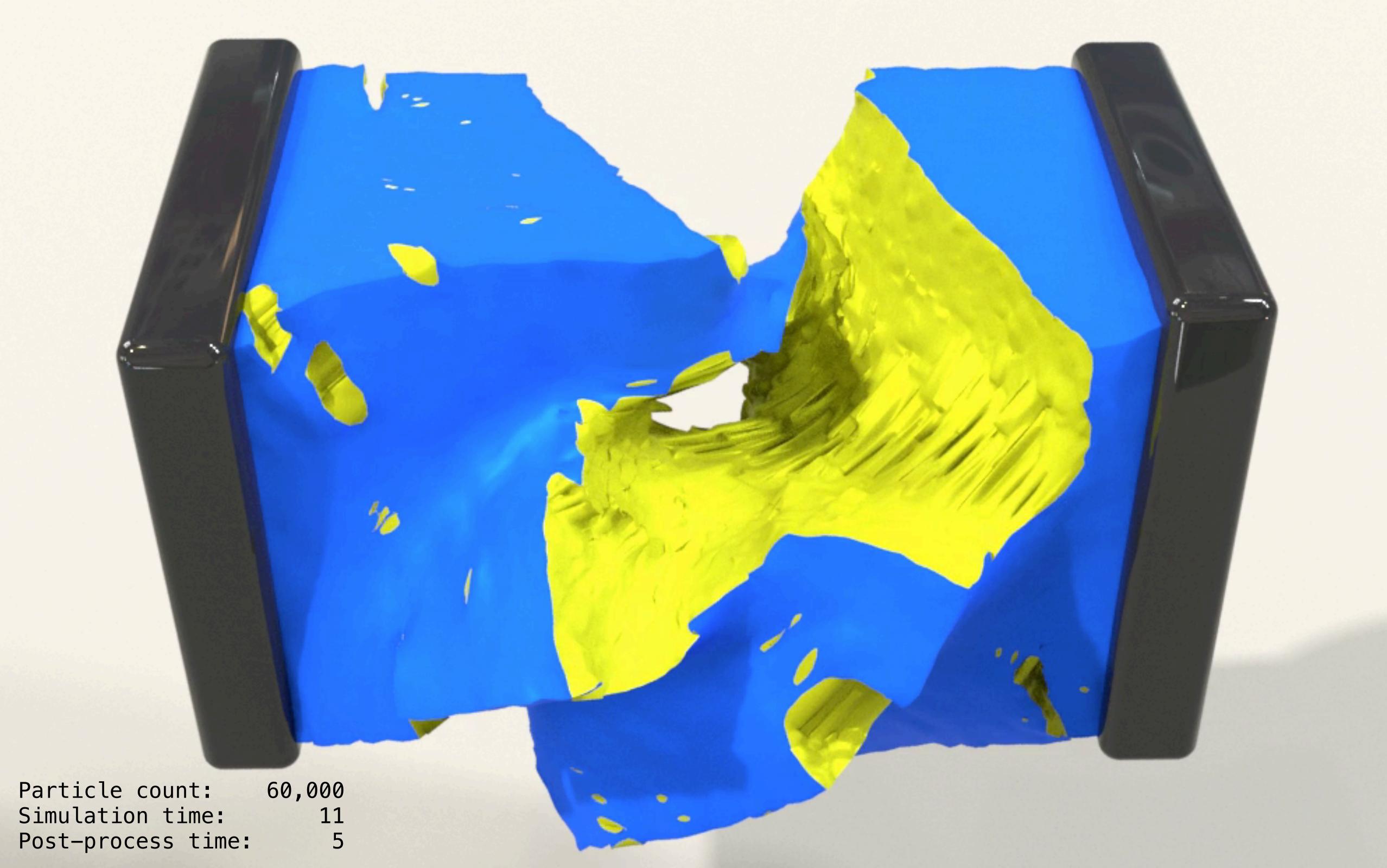
Stephanie Wang University of California — Los Angeles August 28, 2019

SIMULATION AND VISUALIZATION OF DUCTILE FRACTURE WITH MATERIAL POINT METHOD (MPM)

ADVISOR & COLLABORATORS

- Advisor: Joseph Teran, UCLA
- Mengyuan Ding, UCLA
- Theodore Gast, JIXIE EFFECTS (UCLA)
- Leyi Zhu, University of Science and Technology of China
- Steven Gagniere, UCLA
- Chenfanfu Jiang, University of Pennsylvania (UCLA)





OUTLINE

- Material Point Method (MPM)
 - Grid-particle transfer
 - Force computation
- Simulation and visualization of ductile fracture
 - Yield surfaces
 - Mesh-processing
- Discussion

THE MATERIAL POINT METHOD

- Particles for state
- Grid for computations
- Similar to FEM:
 - Vertices for state
 - Mesh for computations
- Interpolation between particles and grid

$m_i^n = \text{Transfer} P2G(m_p)$
$\mathbf{v}_i^n = \operatorname{Transfer} \operatorname{P2G}(\mathbf{v}_p^n)$
$\mathbf{f}_i^n = \text{ComputeForce}()$
$\tilde{\mathbf{v}}_i^{n+1} = \mathbf{v}_i^n + \frac{\Delta t}{m_i^n} \mathbf{f}_i^n$
$\mathbf{v}_p^{n+1} = \text{Transfer} G2P(\tilde{\mathbf{v}}_i^{n+1})$
$\mathbf{x}_p^{n+1} = \mathbf{x}_p^n + \Delta t \mathbf{v}_p^{n+1}$

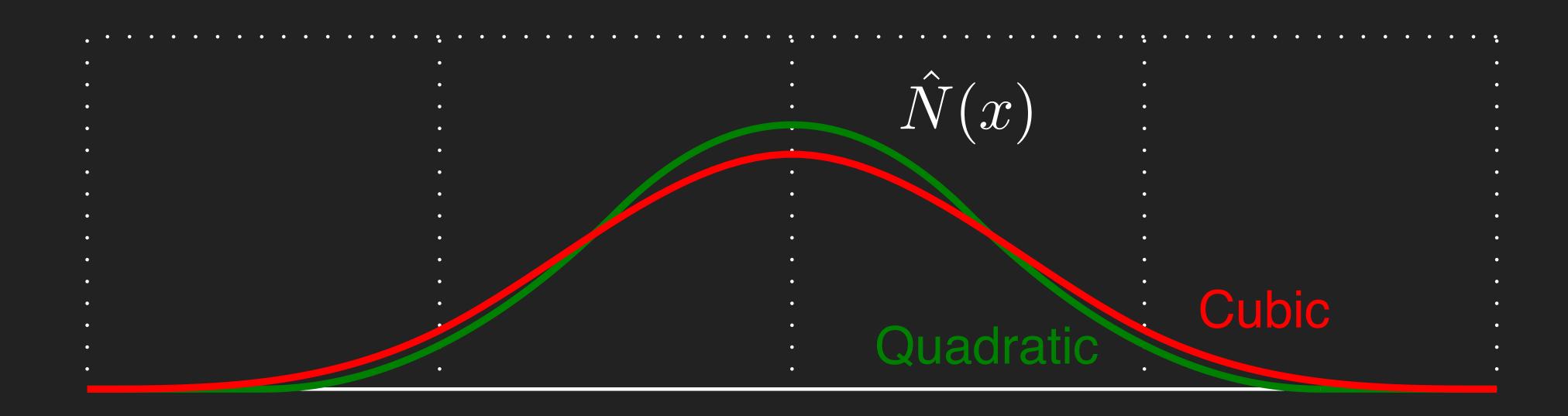
notation	meaning	when	where
\mathbf{x}_p^{n+1}	position	after forces	particle
\mathbf{v}_i^n	velocity	before forces	grid
m_{p}	mass	never changes	particle

$$m_i^n = \operatorname{TransferP2G}(m_p)$$
 $\mathbf{v}_i^n = \operatorname{TransferP2G}(\mathbf{v}_p^n)$
 $\mathbf{f}_i^n = \operatorname{ComputeForce}()$
 $\tilde{\mathbf{v}}_i^{n+1} = \mathbf{v}_i^n + \frac{\Delta t}{m_i^n} \mathbf{f}_i^n$
 $\mathbf{v}_p^{n+1} = \operatorname{TransferG2P}(\tilde{\mathbf{v}}_i^{n+1})$
 $\mathbf{x}_p^{n+1} = \mathbf{x}_p^n + \Delta t \mathbf{v}_p^{n+1}$

notation	meaning	when	where
\mathbf{x}_{p}^{n+1}	position	after forces	particle
\mathbf{v}_i^n	velocity	before forces	grid
m_p	mass	never changes	particle

INTERPOLATION SCHEME

- Compactly supported kernel function
- Spline: C1 (C2) piecewise-polynomial



INTERPOLATION SCHEME

- Tensor product: $N(\mathbf{x}) = \hat{N}(x)\hat{N}(y)\hat{N}(z)$
- Compute weights: $w_{ip}^n = N(\mathbf{x}_i^n \mathbf{x}_p^n)$ $\nabla w_{ip}^n = \nabla N(\mathbf{x}_i^n \mathbf{x}_p^n)$
- Partition of unity $\sum_i w_{ip}^n = 1$
- Barycentric embedding $\sum_{i} w_{ip}^{n} \mathbf{x}_{i}^{n} = \mathbf{x}_{p}^{n}$
- Conservation of momenta, non-increasing energy

INTERPOLATION SCHEME

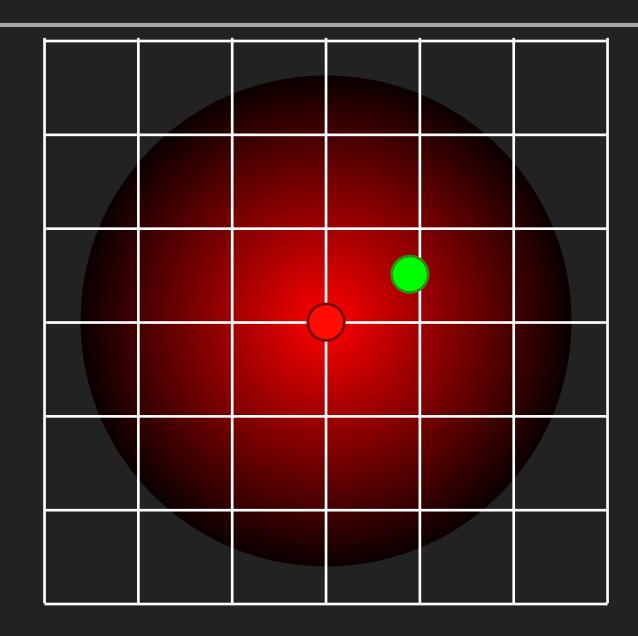
TRANSFERP2G

$$m_i^n = \sum_p w_{ip}^n m_p$$
 Mass

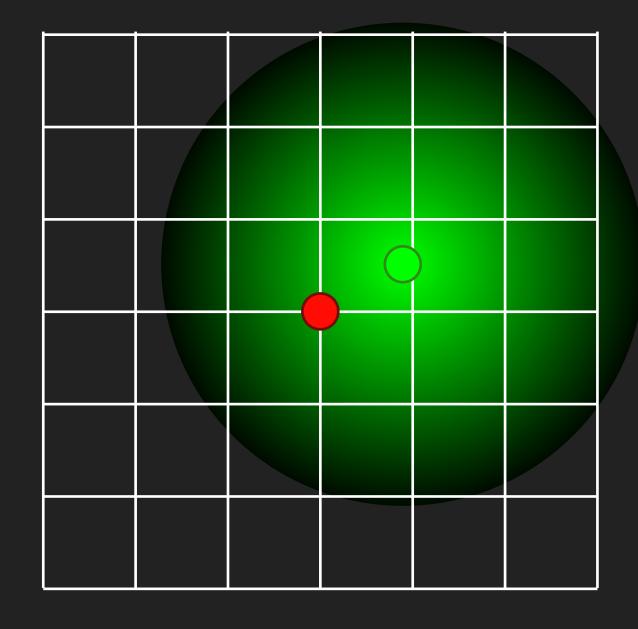
$$m_i^n \mathbf{v}_i^n = \sum_p w_{ip}^n m_p \mathbf{v}_p^n$$
 Momentum

TRANSFERG2P

$$\mathbf{v}_p^{n+1} = \sum_i w_{ip}^n \tilde{\mathbf{v}}_i^{n+1}$$



Kernel at node



Kernel at particle

PIC, FLIP, APIC, RPIC,

$$m_i^n = \sum_p w_{ip}^n m_p$$
 $\mathbf{v}_i^n = \frac{1}{m_i^n} \sum_p w_{ip}^n m_p \mathbf{v}_p^n$
 $\mathbf{f}_i^n = \text{ComputeForce}()$
 $\tilde{\mathbf{v}}_i^{n+1} = \mathbf{v}_i^n + \frac{\Delta t}{m_i^n} \mathbf{f}_i^n$
 $\mathbf{v}_p^{n+1} = \sum_i w_{ip}^n \tilde{\mathbf{v}}_i^{n+1}$
 $\mathbf{x}_p^{n+1} = \mathbf{x}_p^n + \Delta t \mathbf{v}_p^{n+1}$

Particle In Cell (PIC)

$$\begin{split} m_i^n &= \sum_p w_{ip}^n m_p \\ \mathbf{D}_p^n &= \sum_i w_{ip}^n (\mathbf{x}_i^n - \mathbf{x}_p^n) (\mathbf{x}_i^n - \mathbf{x}_p^n)^T \\ \mathbf{v}_i^n &= \frac{1}{m_i^n} \sum_p w_{ip}^n m_p (\mathbf{v}_p^n + \mathbf{B}_p^n (\mathbf{D}_p^n)^{-1} (\mathbf{x}_i^n - \mathbf{x}_p^n)) \\ \mathbf{f}_i^n &= \text{ComputeForce}() \\ \tilde{\mathbf{v}}_i^{n+1} &= \mathbf{v}_i^n + \frac{\Delta t}{m_i^n} \mathbf{f}_i^n \\ \mathbf{v}_p^{n+1} &= \sum_i w_{ip}^n \tilde{\mathbf{v}}_i^{n+1} \\ \mathbf{B}_p^{n+1} &= \sum_i w_{ip}^n \mathbf{v}_i^n (\mathbf{x}_i^n - \mathbf{x}_p^n)^T \\ \mathbf{x}_p^{n+1} &= \mathbf{x}_p^n + \Delta t \mathbf{v}_p^n \end{split}$$

Affine Particle In Cell (APIC)

PIC, FLIP, APIC, RPIC,

- ► Particle In Cell (PIC): Harlow 1964
- Fluid Implicit Particle (FLIP): Brackbill and Ruppel 1986
- Affine Particle In Cell (APIC): Jiang et al. 2015
- Rigid Particle In Cell (RPIC): Jiang et al. 2015
- ► Polynomial Particle In Cell (PolyPIC): Fu et al. 2017
- Extended Particle In Cell (XPIC): Hammerquist et al. 2017

m_i^n	$= \text{TransferP2G}(m_p)$
\mathbf{v}_i^n	$= \text{TransferP2G}(\mathbf{v}_p^n)$
\mathbf{f}_i^n	= ComputeForce()
$\tilde{\mathbf{v}}_i^{n+1}$	$=\mathbf{v}_i^n+\frac{\Delta t}{m_i^n}\mathbf{f}_i^n$
\mathbf{v}_p^{n+1}	$= \text{Transfer} G2P(\tilde{\mathbf{v}}_i^{n+1})$
\mathbf{x}_p^{n+1}	$= \mathbf{x}_p^n + \Delta t \mathbf{v}_p^{n+1}$

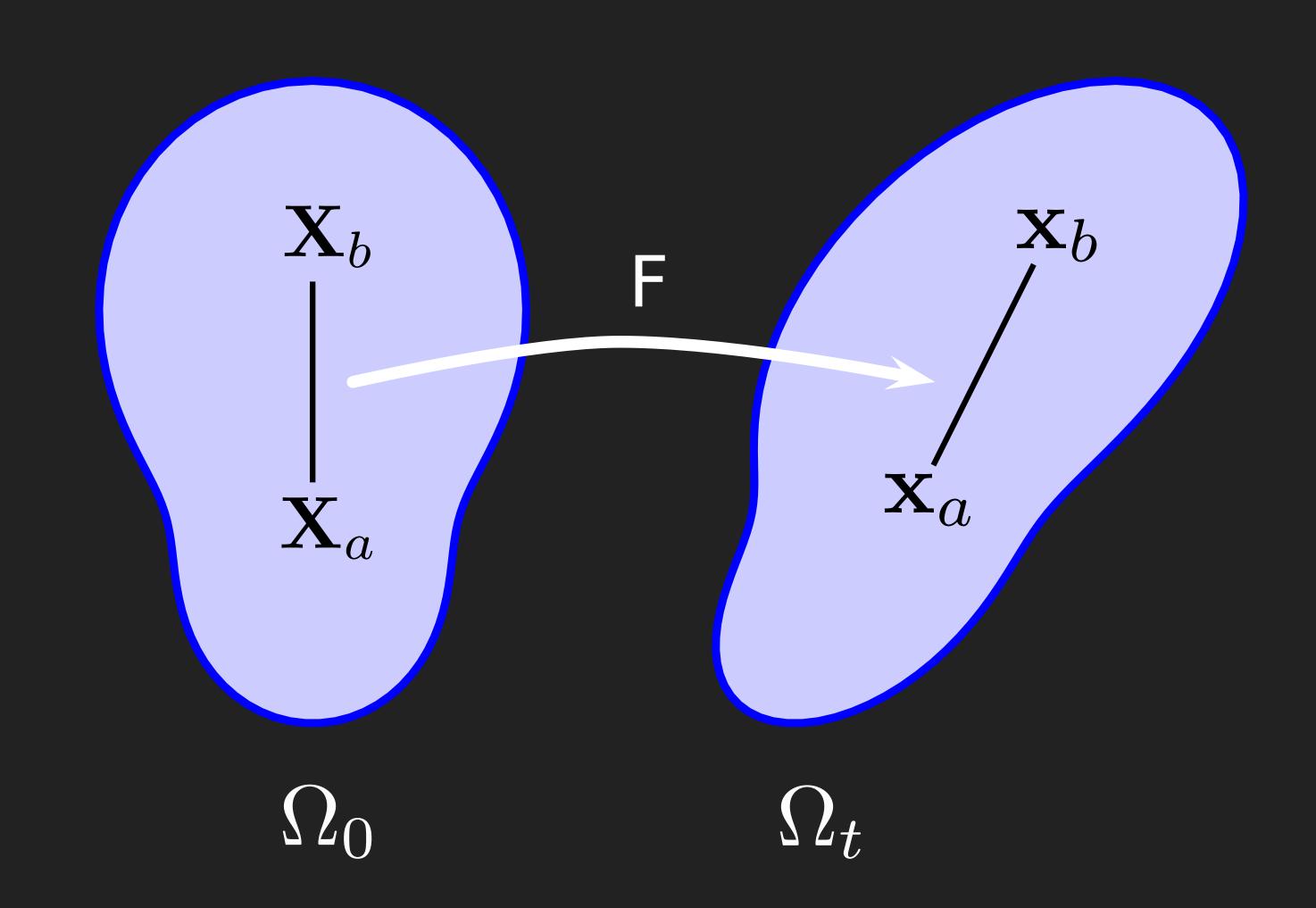
notation	meaning	when	where
\mathbf{x}_p^{n+1}	velocity	before forces	grid
\mathbf{v}_i^n	position	after forces	particle
m_{p}	mass	never changes	particle

$$m_i^n = \operatorname{TransferP2G}(m_p)$$
 $\mathbf{v}_i^n = \operatorname{TransferP2G}(\mathbf{v}_p^n)$
 $\mathbf{f}_i^n = \operatorname{ComputeForce}()$
 $\tilde{\mathbf{v}}_i^{n+1} = \mathbf{v}_i^n + \frac{\Delta t}{m_i^n} \mathbf{f}_i^n$
 $\mathbf{v}_p^{n+1} = \operatorname{TransferG2P}(\tilde{\mathbf{v}}_i^{n+1})$
 $\mathbf{x}_p^{n+1} = \mathbf{x}_p^n + \Delta t \mathbf{v}_p^{n+1}$

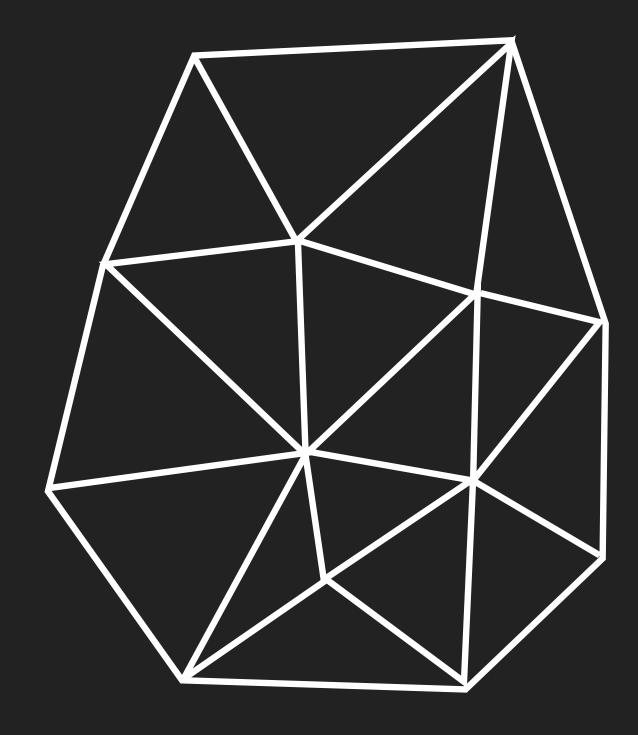
notation	meaning	when	where
\mathbf{x}_p^{n+1}	velocity	before forces	grid
\mathbf{v}_i^n	position	after forces	particle
m_p	mass	never changes	particle

DEFORMATION GRADIENT

$$\mathbf{x} = \Phi(\mathbf{X}, t)$$
 $\mathbf{F}(\mathbf{X}, t) = \frac{\partial \Phi}{\partial \mathbf{X}}(\mathbf{X}, t)$

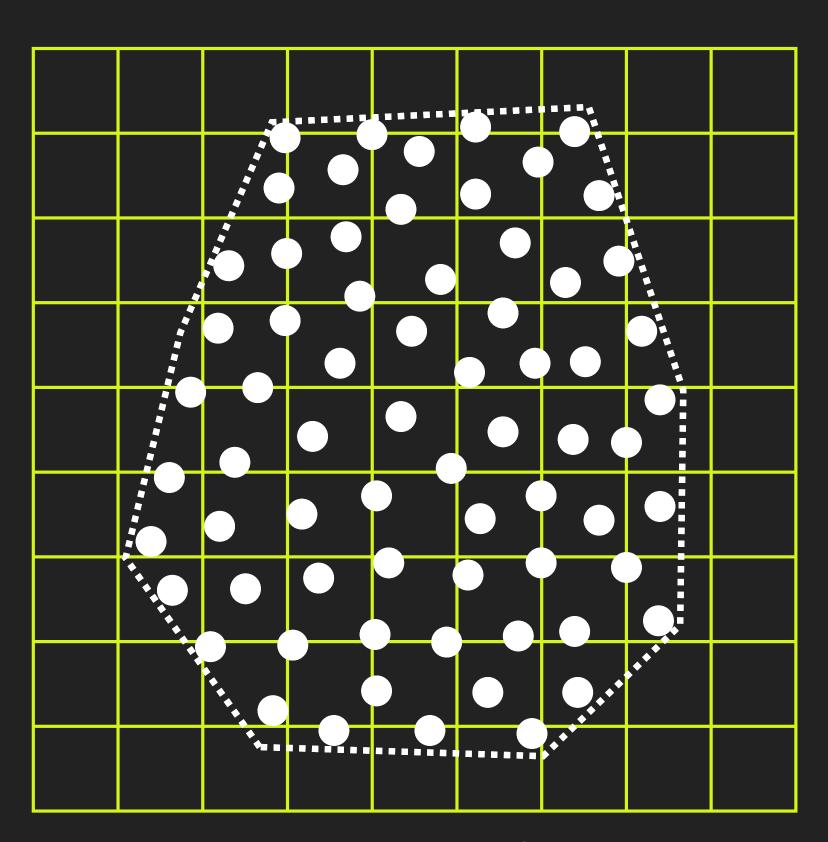


DEFORMATION GRADIENT



mesh-based forces: F per triangle

$$\Phi = \sum_{e} V_e^0 \Psi(\mathbf{F}_e)$$



particle-based forces: F per particle

$$\Phi = \sum_{p} V_p^0 \Psi(\mathbf{F}_p)$$

FORCE AS ENERGY GRADIENT

- First Piola-Kirchoff stress $P(F) = \frac{\partial \Psi}{\partial F}(F)$
- Total potential energy $\Phi = \sum_{p} V_p^0 \Psi(\mathbf{F}_p)$
 - $\qquad \textbf{``F is a function of x''} \quad \mathbb{F}_p^{n+1} = \left(\mathbb{I} + \Delta t \sum_i \mathbf{v}_i (\nabla \omega_{ip}^n)^T \right) \mathbb{F}_p^n \qquad \mathbb{F}_e^n = \sum_q \mathbf{x}_q^n \nabla N_q (\mathbf{X}_e)^T$
 - ▶ Energy is a function of \mathbf{x} $\mathbf{f}_i = -\frac{\partial \Phi}{\partial \mathbf{x}_i}$
 - ► Force can be computed from x

$$\mathbf{f}_{i} = -\frac{\partial \Phi}{\partial \mathbf{x}_{i}} = -\sum_{p} V_{p}^{0} \left(\frac{\partial \Psi}{\partial \mathbf{F}} (\mathbf{F}_{p}(\mathbf{x})) \right) (\mathbf{F}_{p}^{n})^{T} \nabla \omega_{ip}^{n}$$

HYPER-ELASTIC MODELS

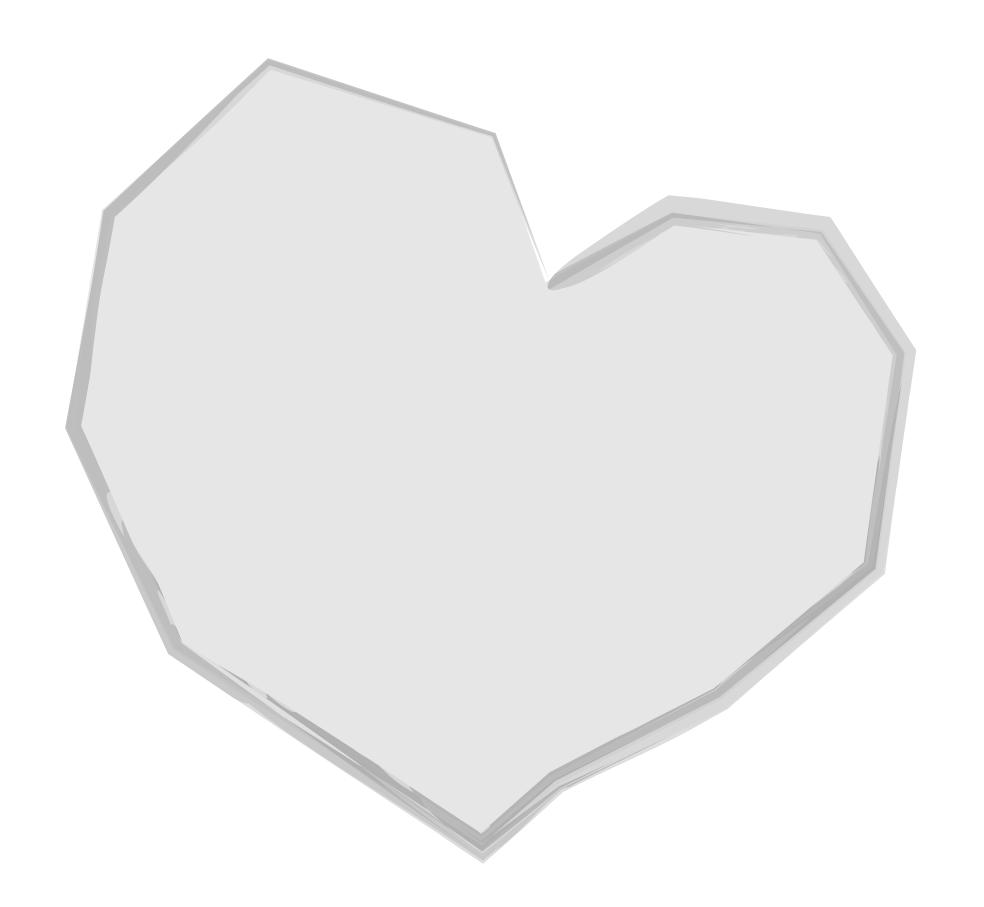
St. Venant Kirchhoff potential with Hencky strain

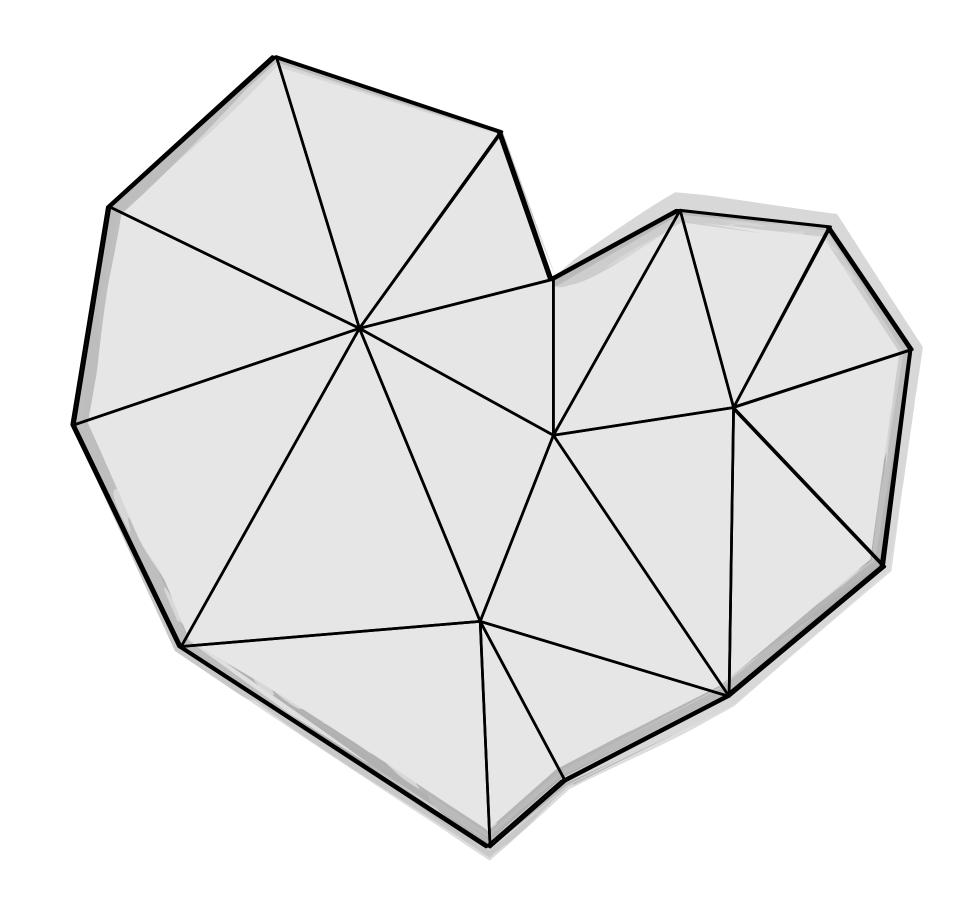
$$\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$$

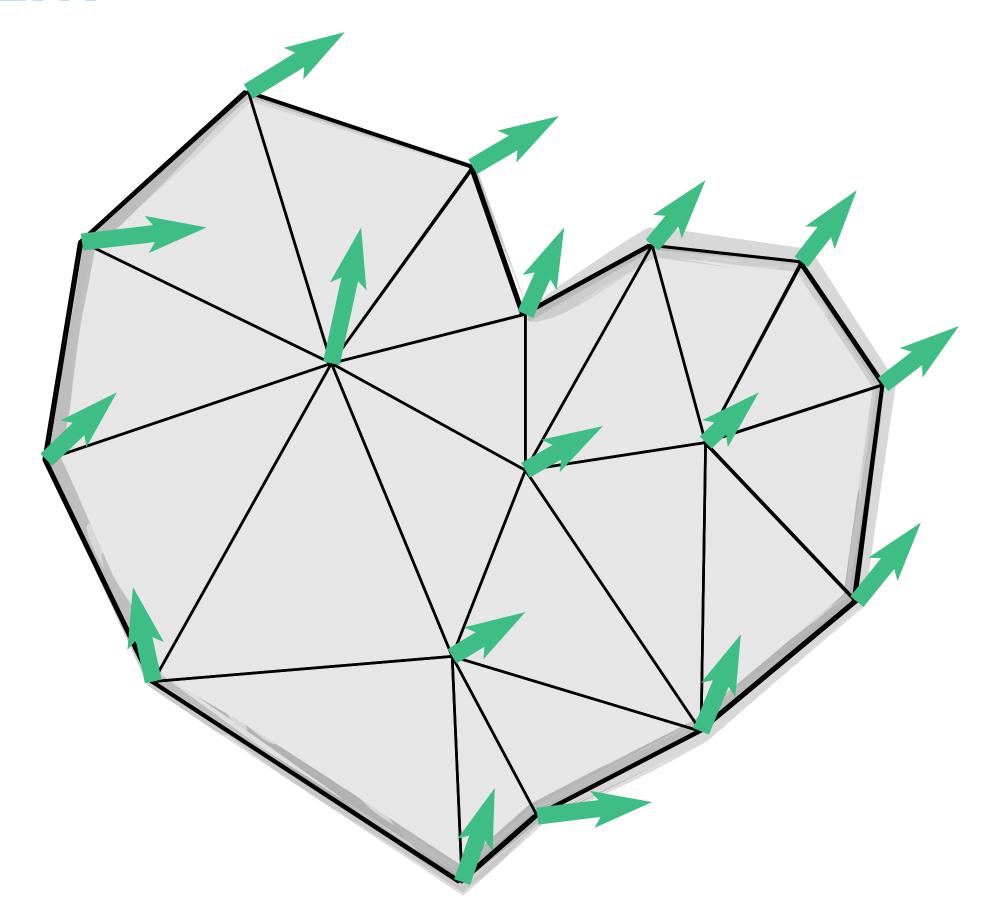
$$\psi(\mathbf{F}) = \mu \operatorname{tr}((\ln \mathbf{\Sigma})^{2}) + \frac{\lambda}{2} (\operatorname{tr}(\ln \mathbf{\Sigma}))^{2}$$

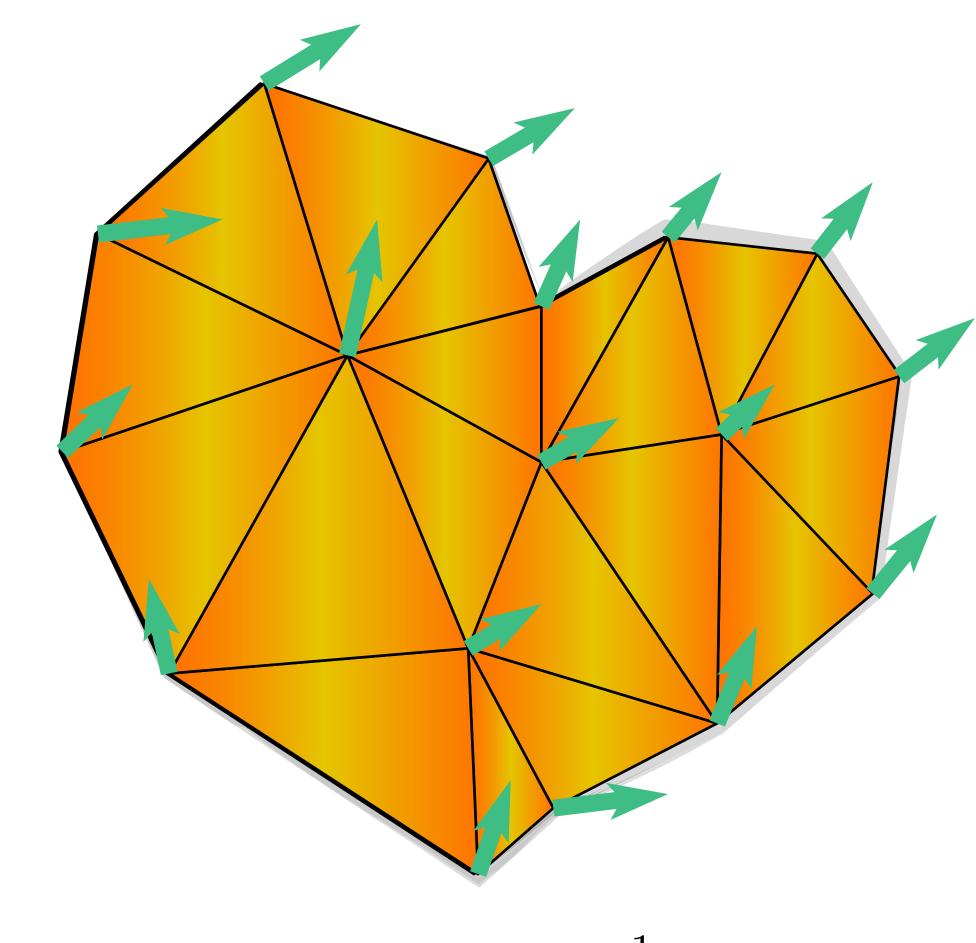
$$\frac{\partial \psi}{\partial \mathbf{F}} = \mathbf{U}(2\mu \mathbf{\Sigma}^{-1} \ln \mathbf{\Sigma} + \lambda \operatorname{tr}(\ln \mathbf{\Sigma}) \mathbf{\Sigma}^{-1}) \mathbf{V}^{T}$$

(Easy for analytical plastic projection)



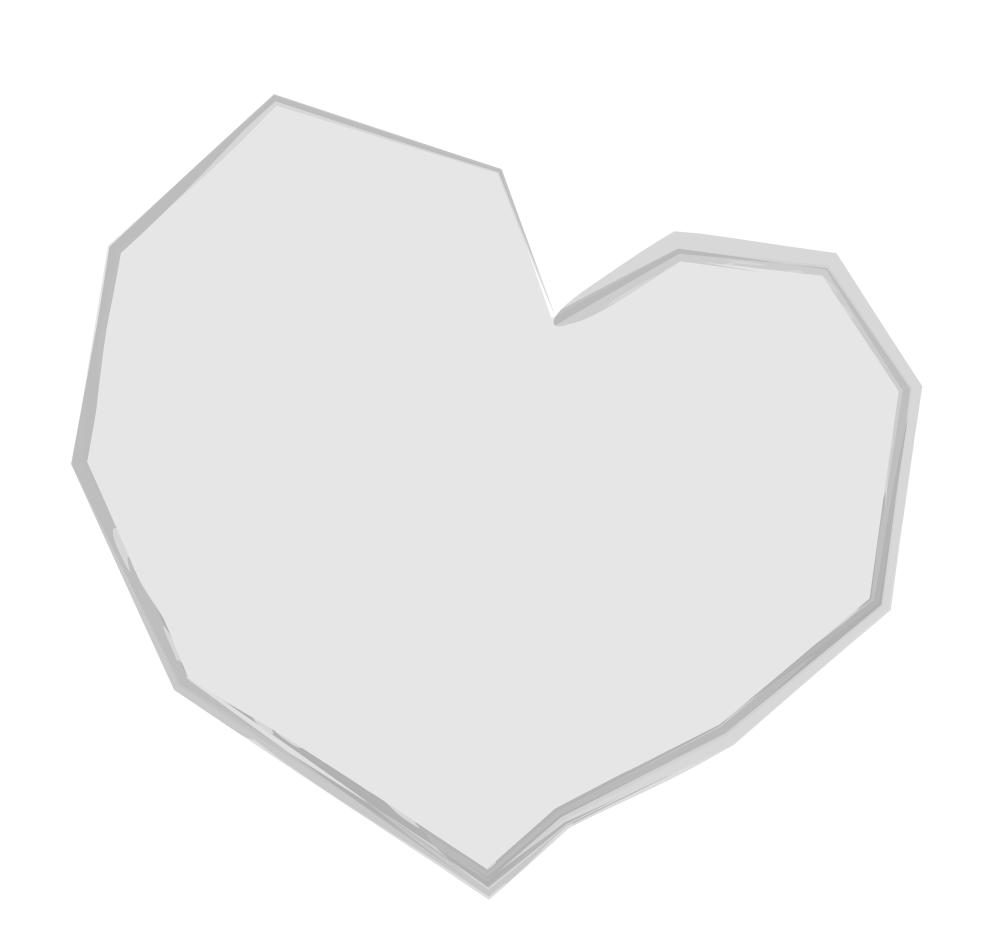


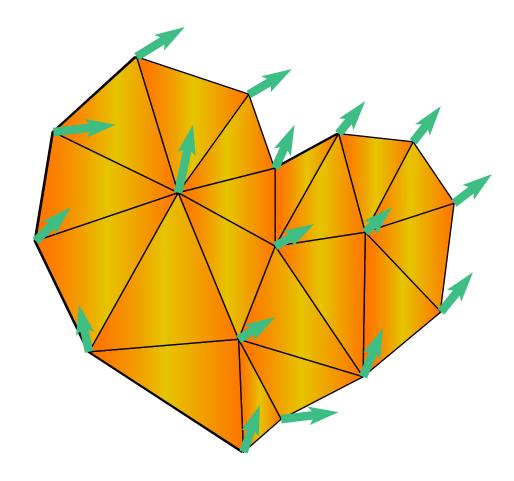


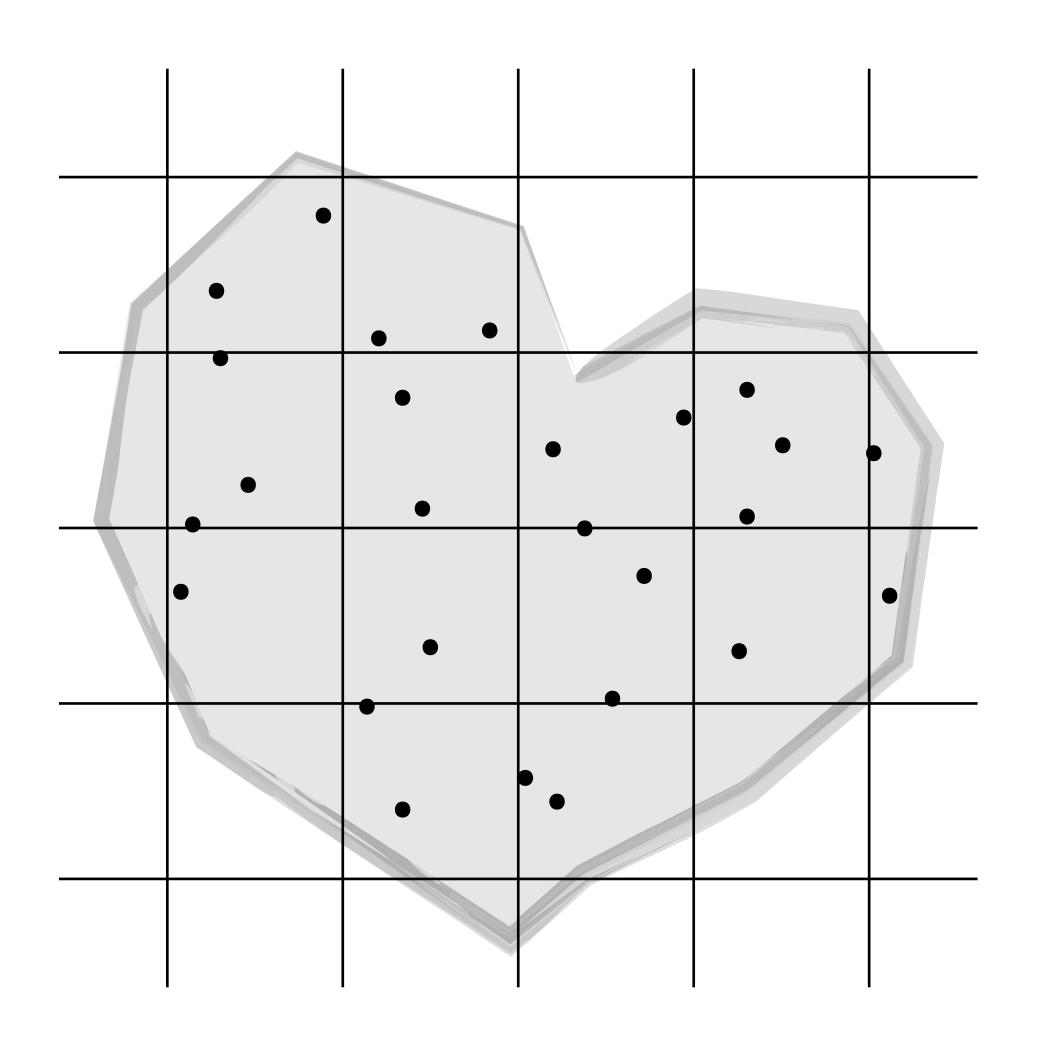


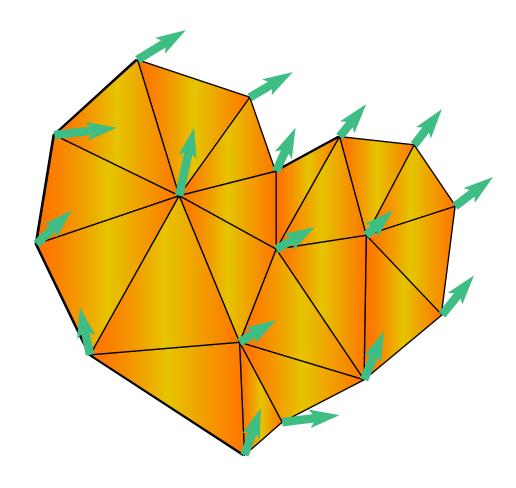
$$\Phi = \sum_{e} V_e^0 \Psi(\mathbf{F}_e)$$
 $\mathbf{F}_e^n = \sum_{q} \mathbf{x}_q^n \nabla N_q (\mathbf{X}_e)^T$

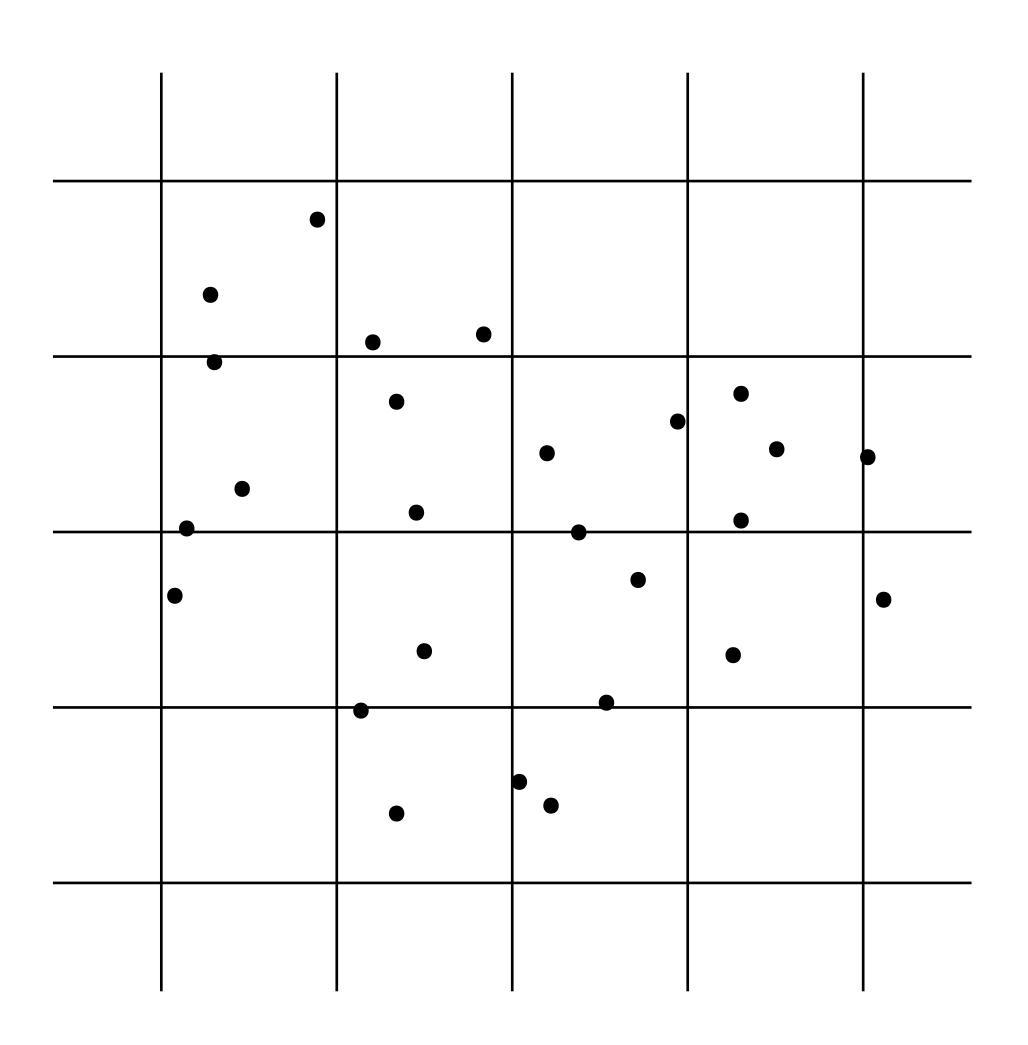
$$\mathbf{F}_e^n = \left(\sum_q \mathbf{x}_q^n \nabla N_q(\xi_e)^T\right) \left(\sum_q \mathbf{X}_q \nabla N_q(\xi_e)^T\right)^{-1}$$

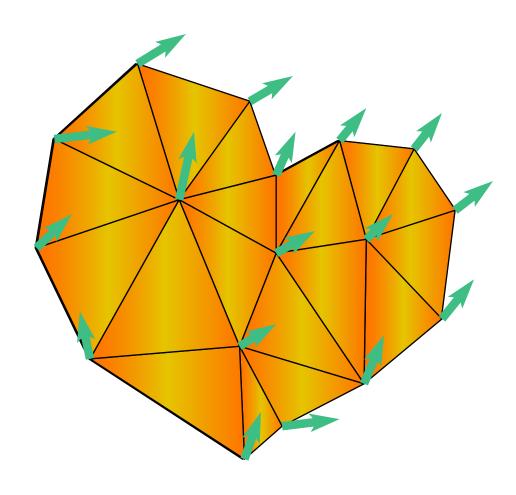


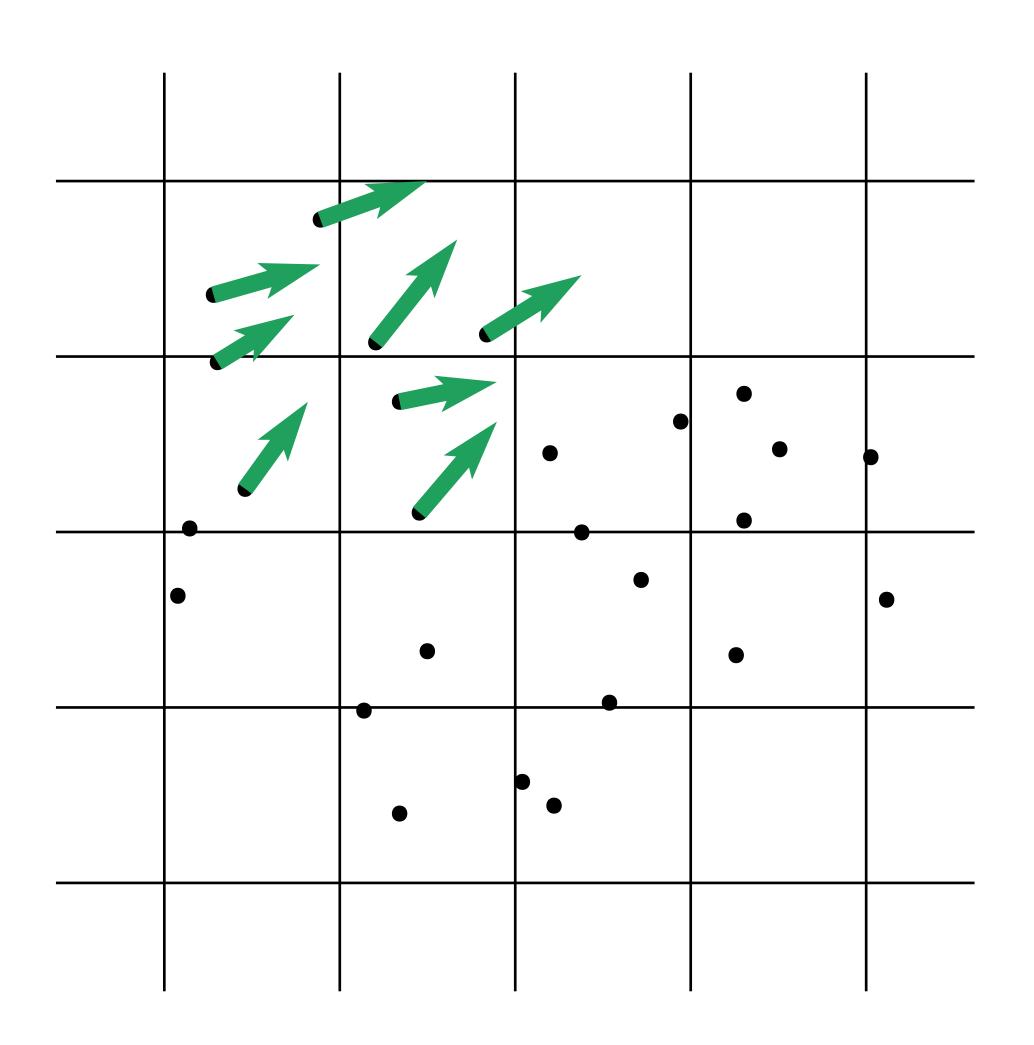


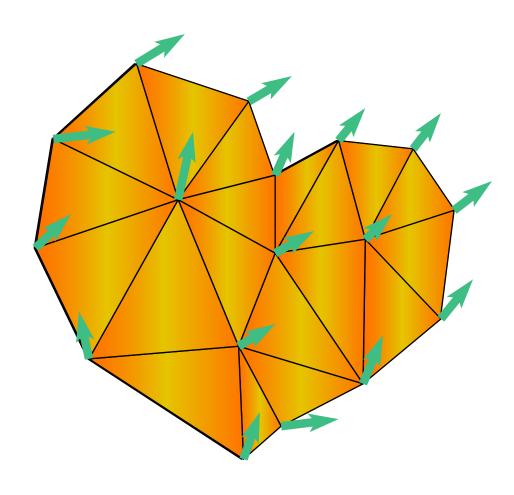


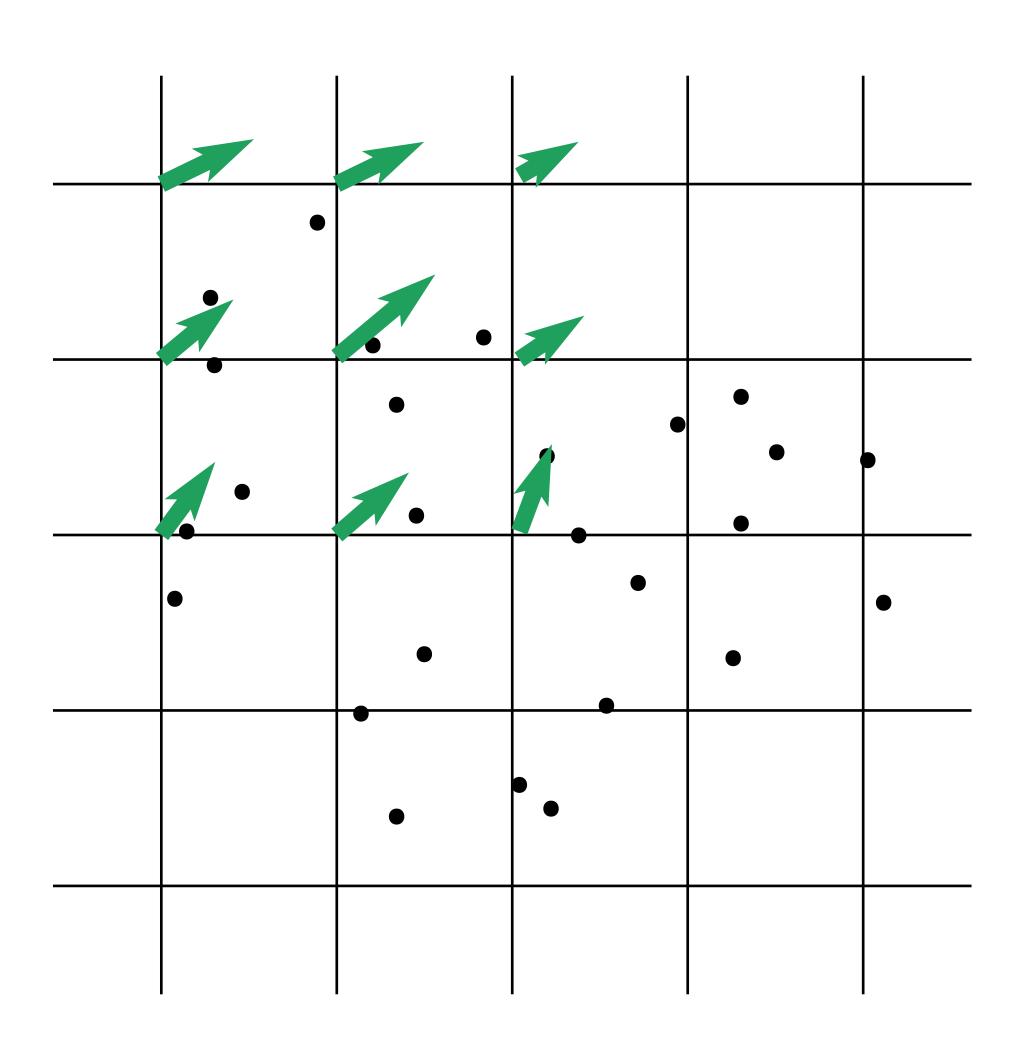


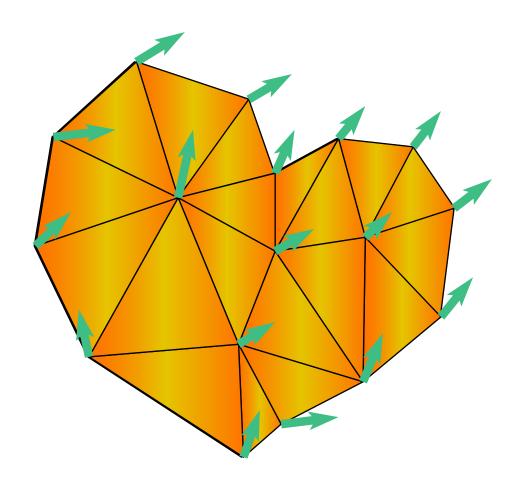


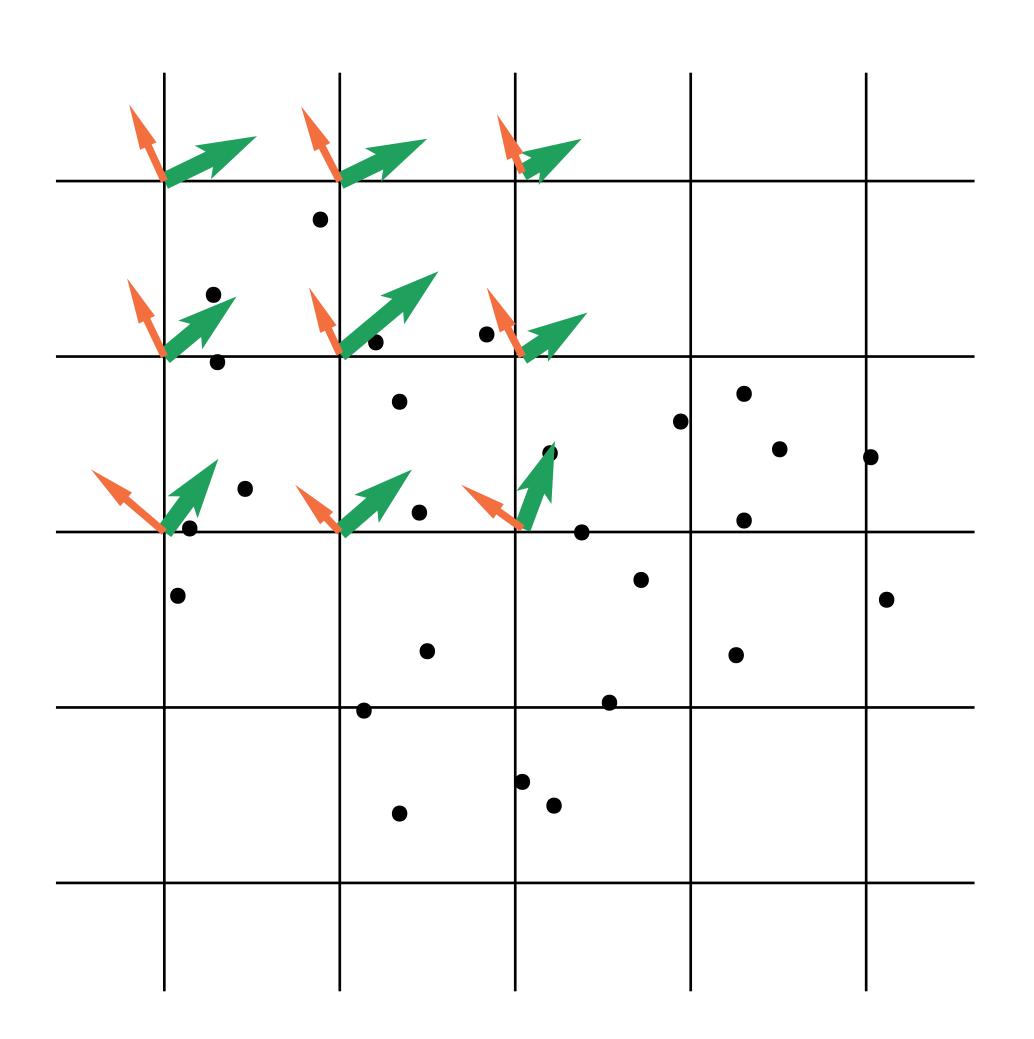


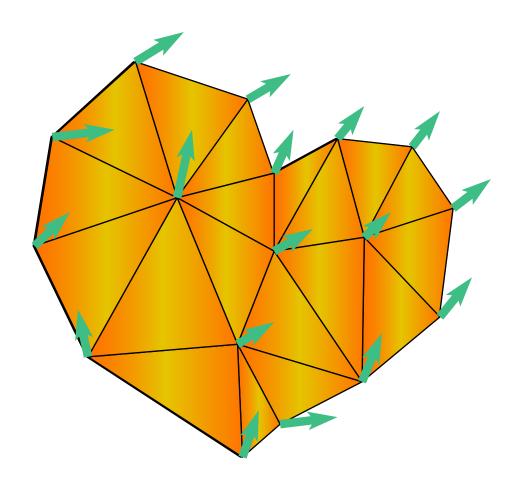


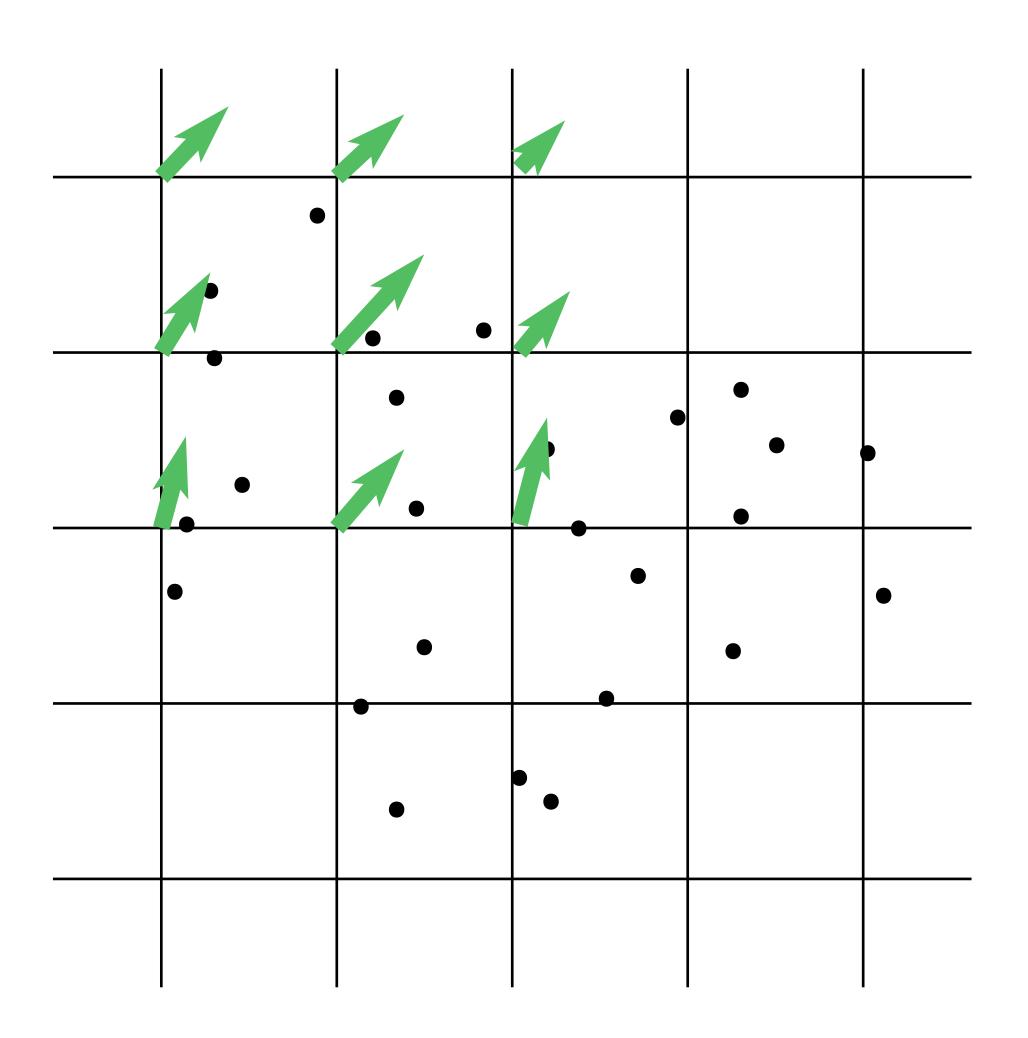


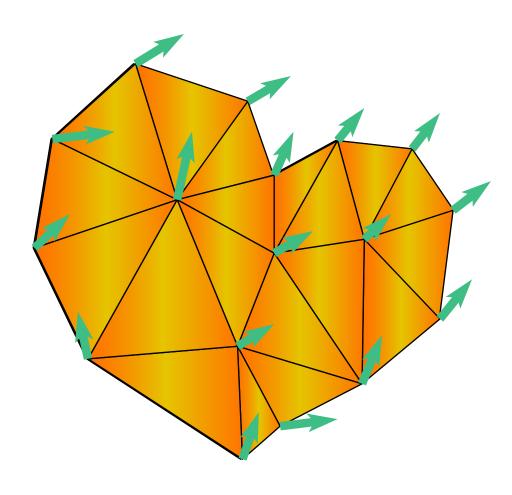


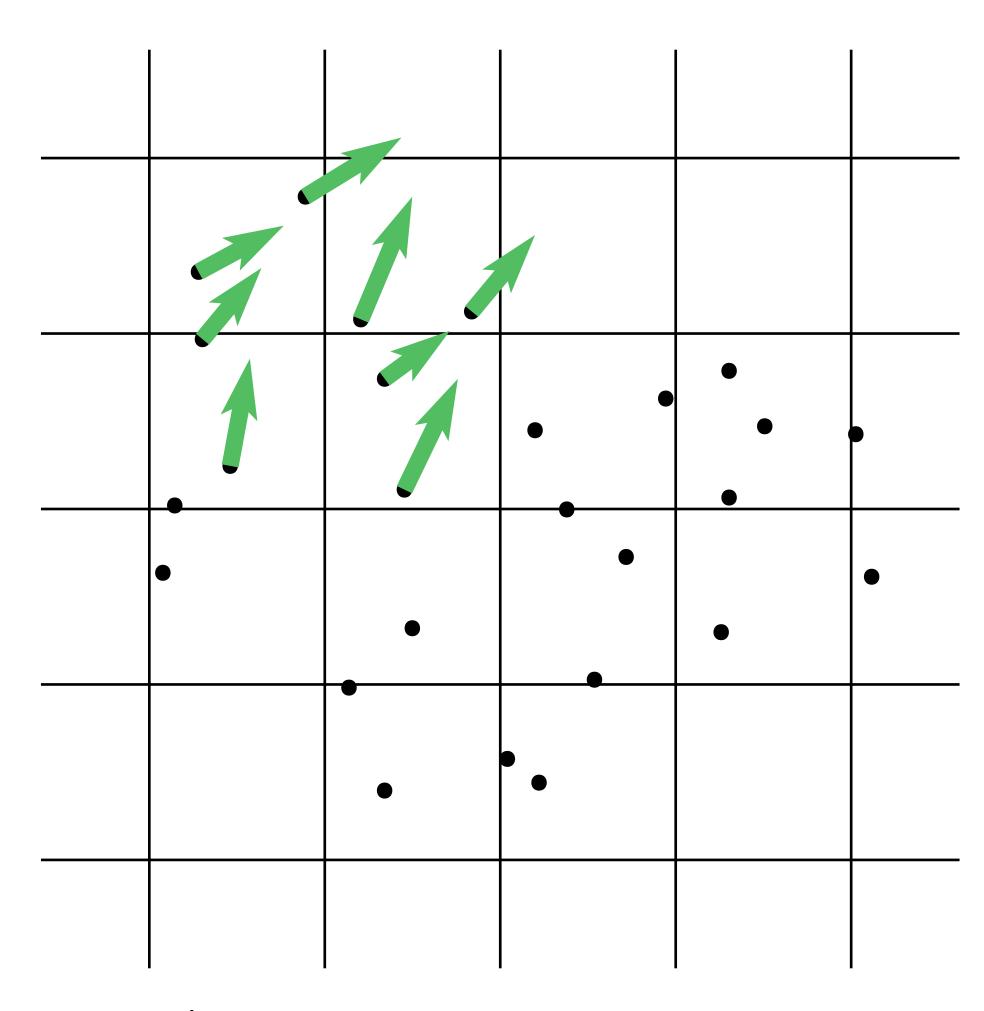


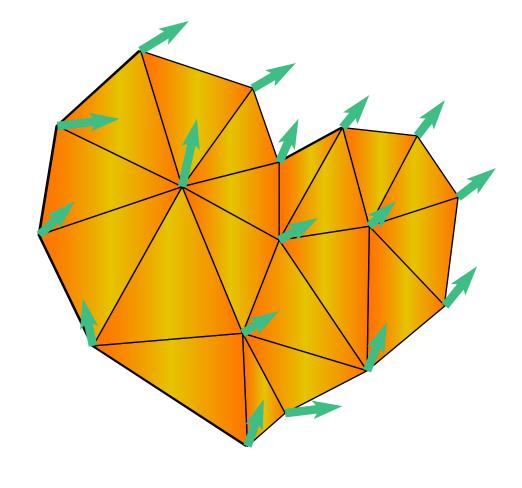








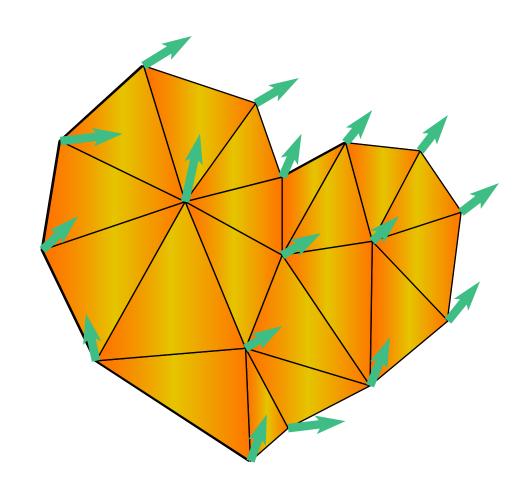




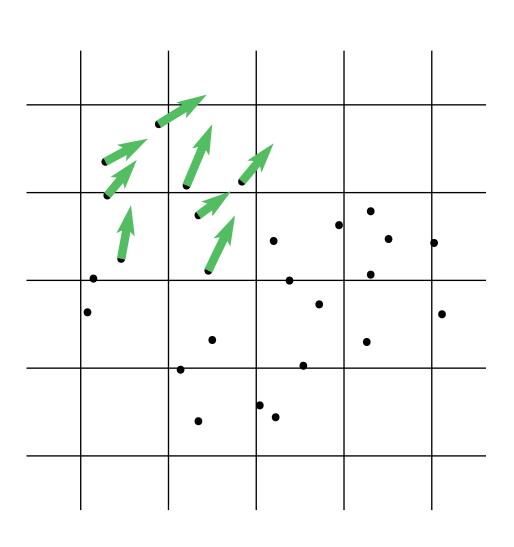
$$\Phi = \sum_{p} V_p^0 \Psi(\mathbf{F}_p)$$

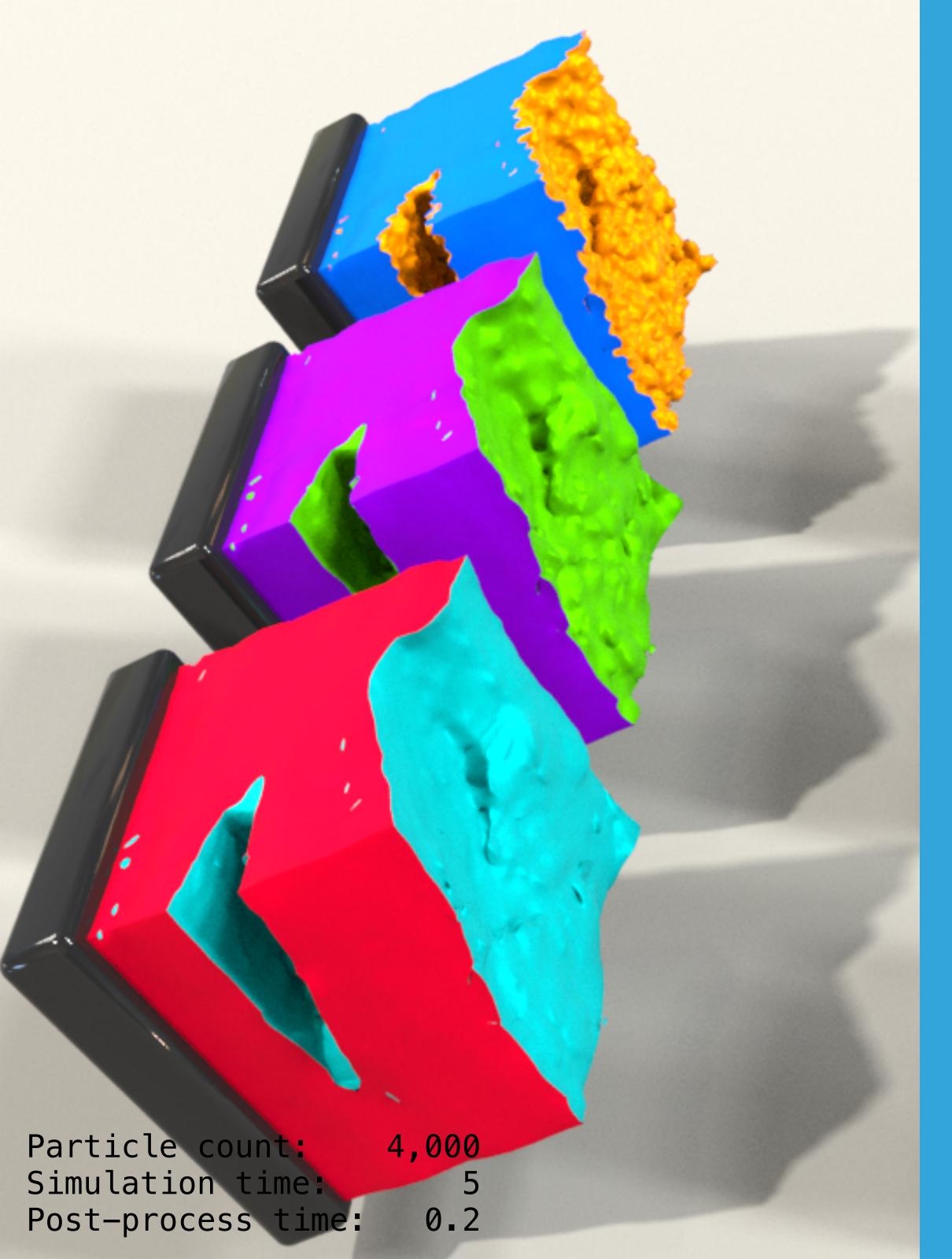
$$\mathbf{F}_p^{n+1} = \left(\mathbf{I} + \Delta t \sum_i \mathbf{v}_i (\nabla \omega_{ip}^n)^T\right) \mathbf{F}_p^n$$

LAGRANGIAN MPM



$$egin{aligned} \Phi &= \sum_e V_e^0 \Psi(\mathbf{F}_e) \ \mathbf{F}_e^n &= \sum_q \mathbf{x}_q^n
abla N_q (\mathbf{X}_e)^T \ \mathbf{f}_i^n &= \sum_q \omega_{iq}^n \mathbf{f}_q^n \end{aligned}$$





SIMULATION AND VISUALIZATION FRACTURE

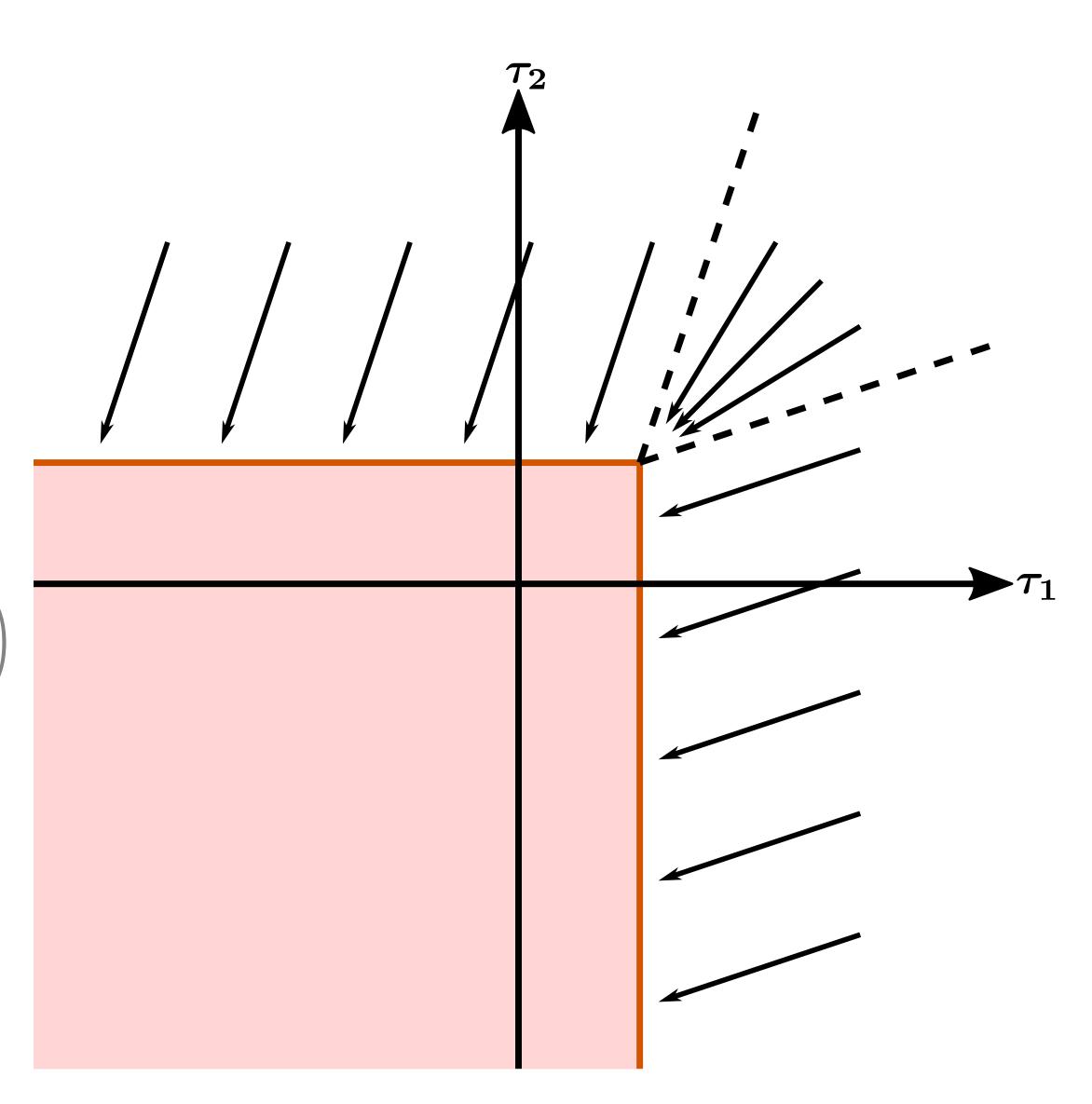
RANKINE YIELD SURFACE [MÜLLER ET AL. 2014]

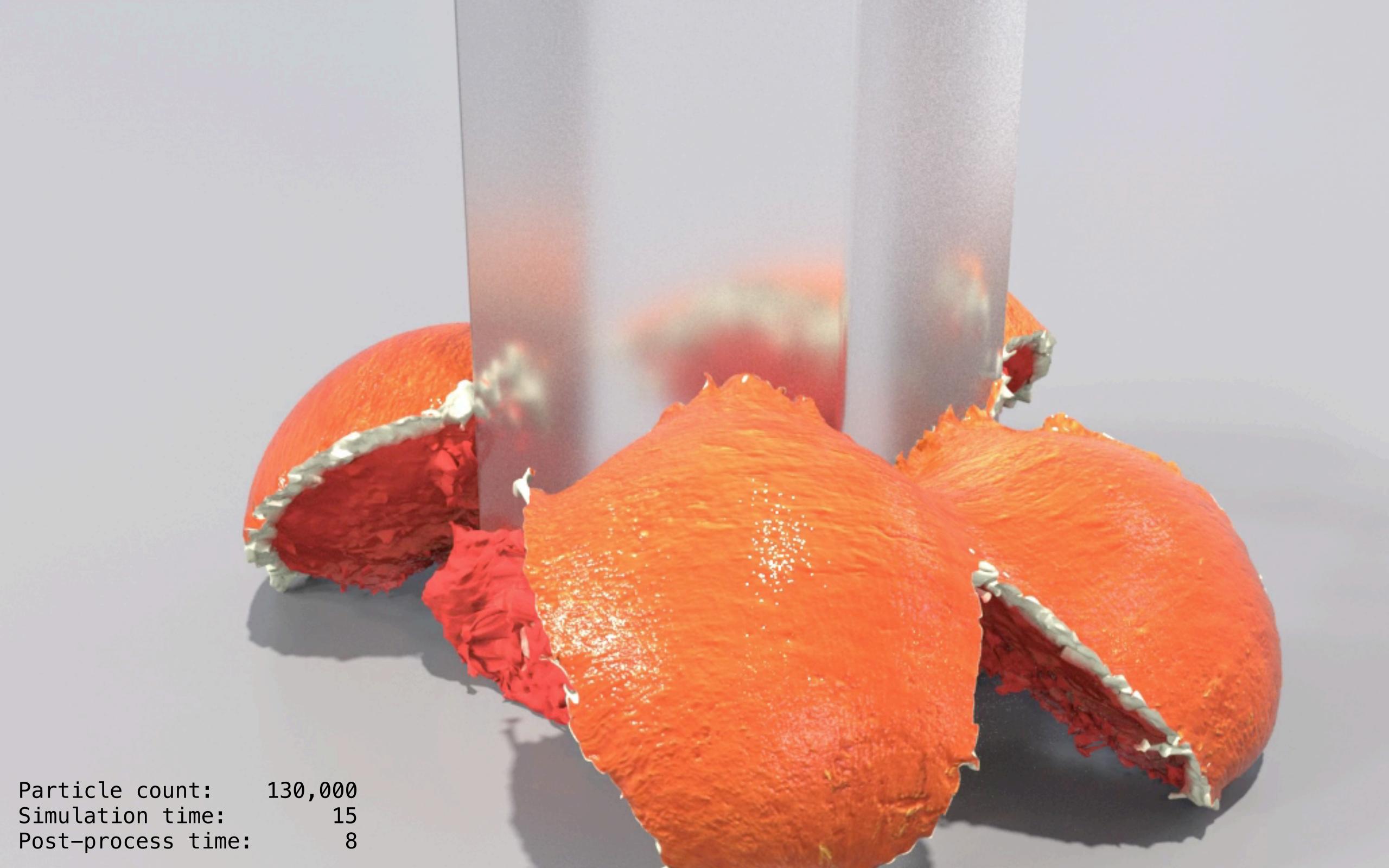
Constraining maximal principal stress

$$y(\tau) = \max_{\|\mathbf{u}\| = \|\mathbf{v}\| = 1} \mathbf{u}^T \tau \mathbf{v} - \tau_C \le 0$$

- Mode I yielding (tension)
- Softening rule

$$\tau_C^{n+1} = \tau_C^n + \alpha \left(\max_{\|\mathbf{u}\| = \|\mathbf{v}\| = 1} \mathbf{u}^T \epsilon^{n+1} \mathbf{v} - \max_{\|\tilde{\mathbf{u}}\| = \|\tilde{\mathbf{v}}\| = 1} \tilde{\mathbf{u}}^T \epsilon^{tr} \tilde{\mathbf{v}} \right)$$



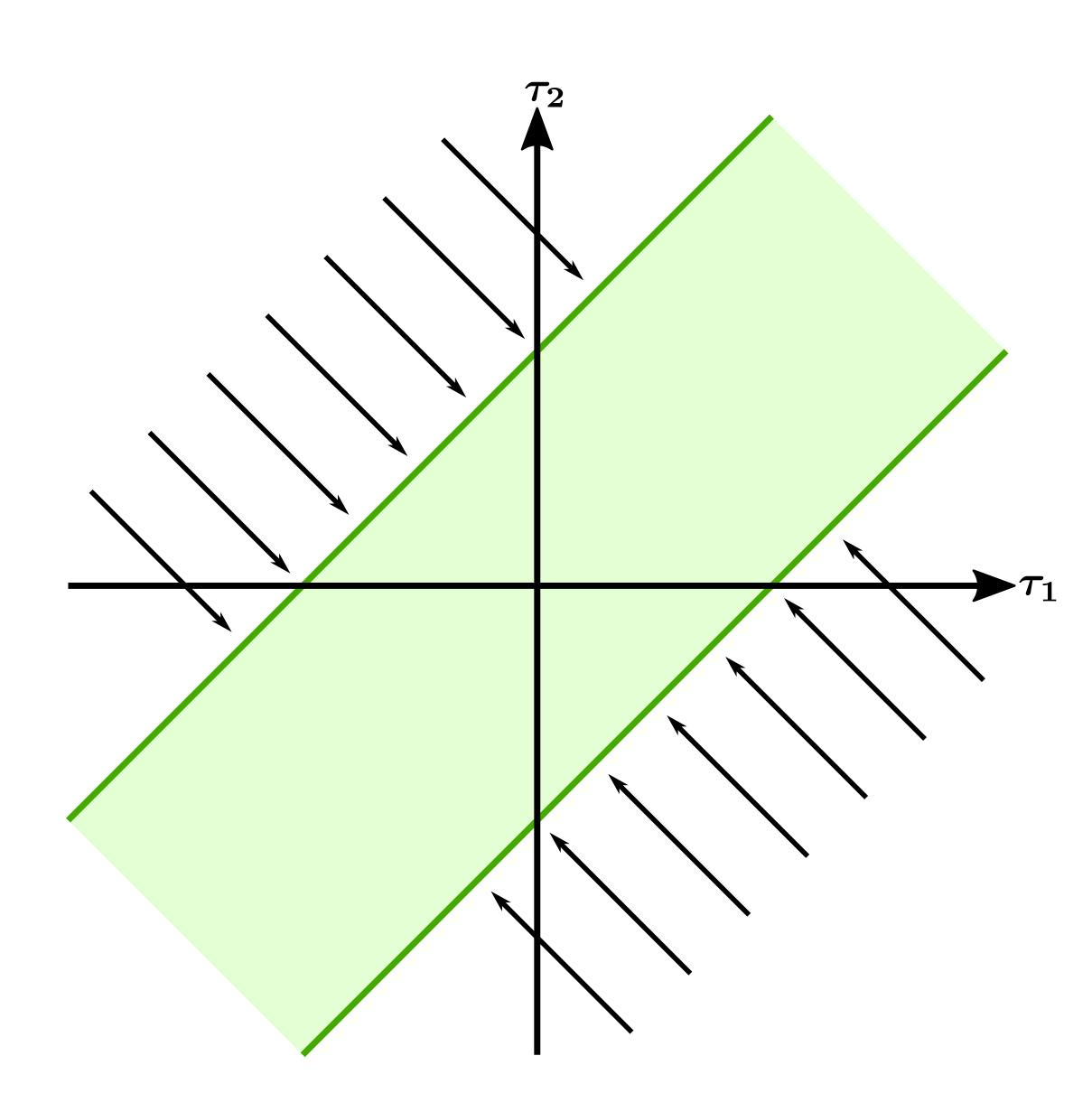


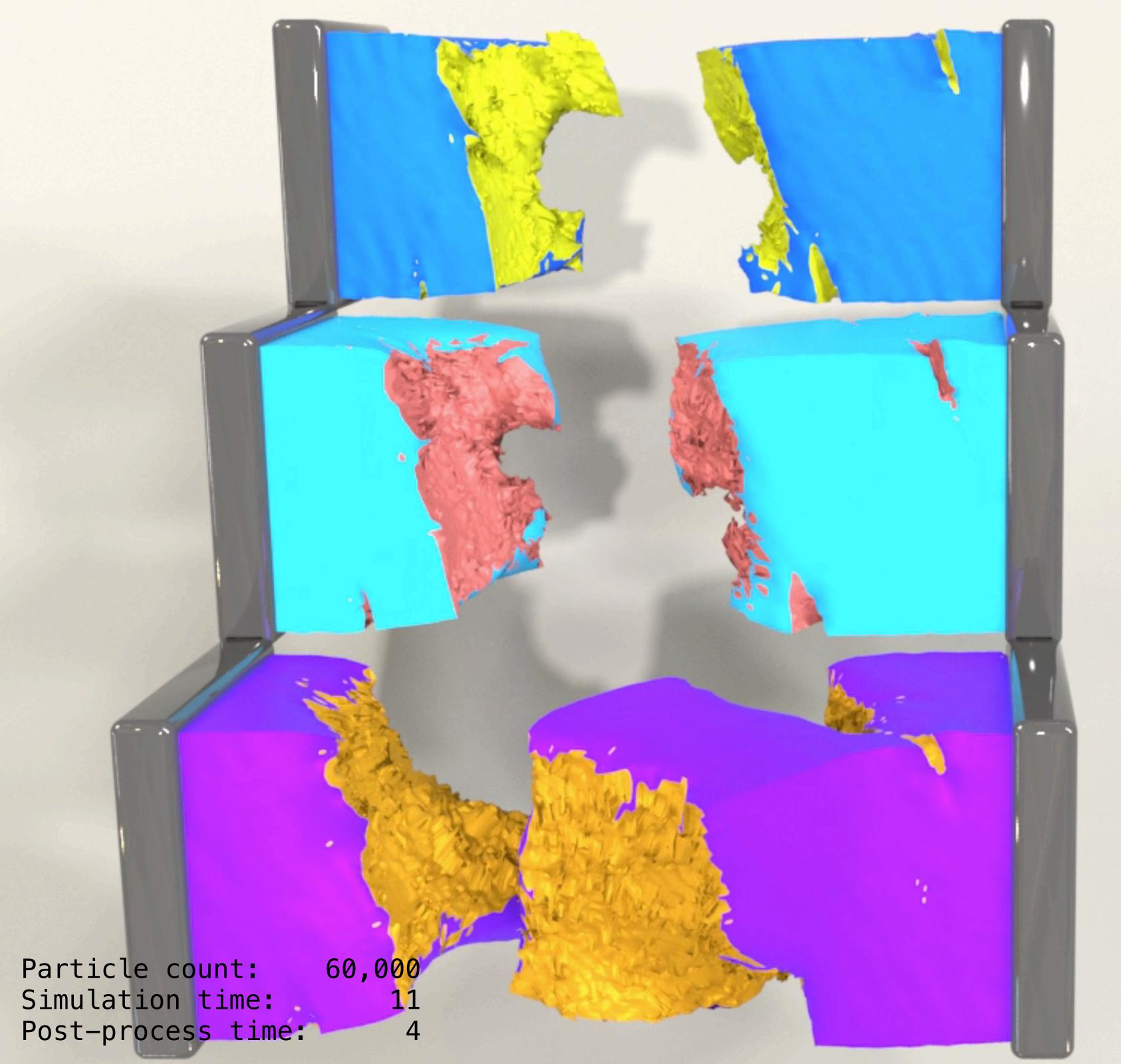
VON MISES (J2) YIELD SURFACE

Constraining shear stress

$$y(\tau) = \|\tau - \operatorname{tr}(\tau)\mathbf{I}\|_F - \tau_C \le 0$$

- Mode II and III yielding (shear)
- Softening can be added





$$\tau_C/E=1$$

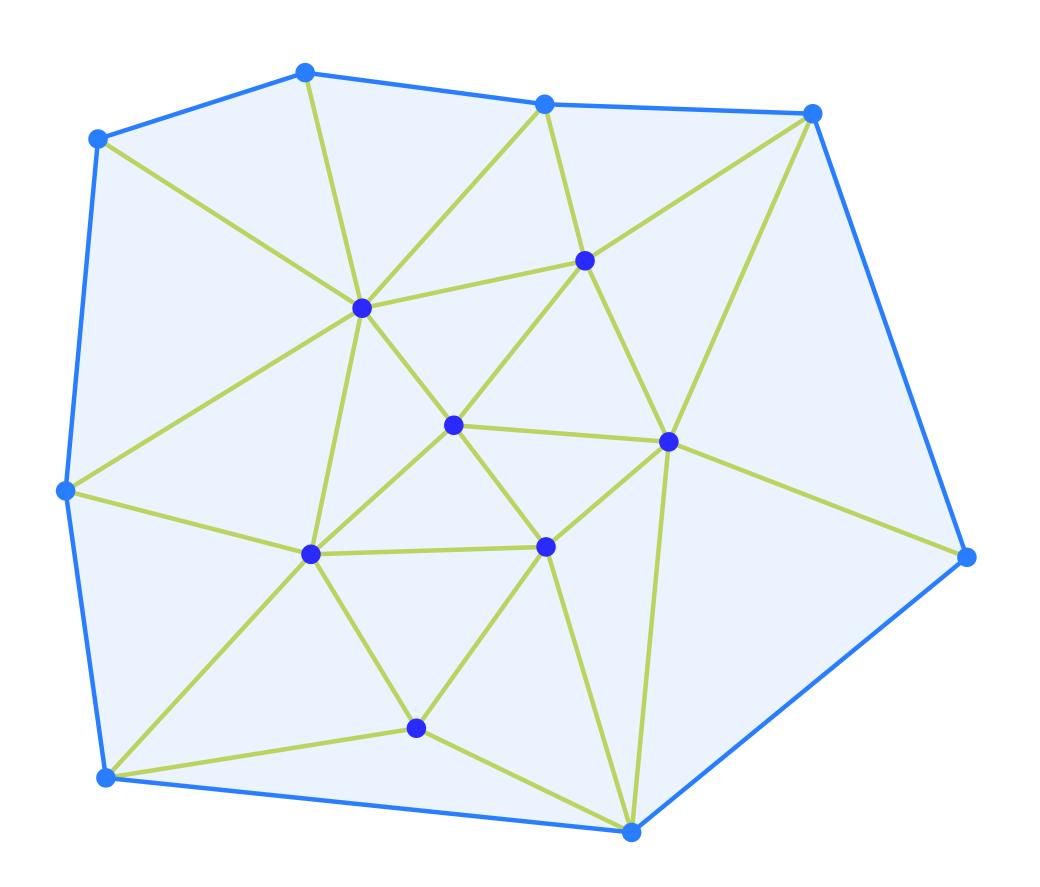
$$\tau_C/E = 0.7$$

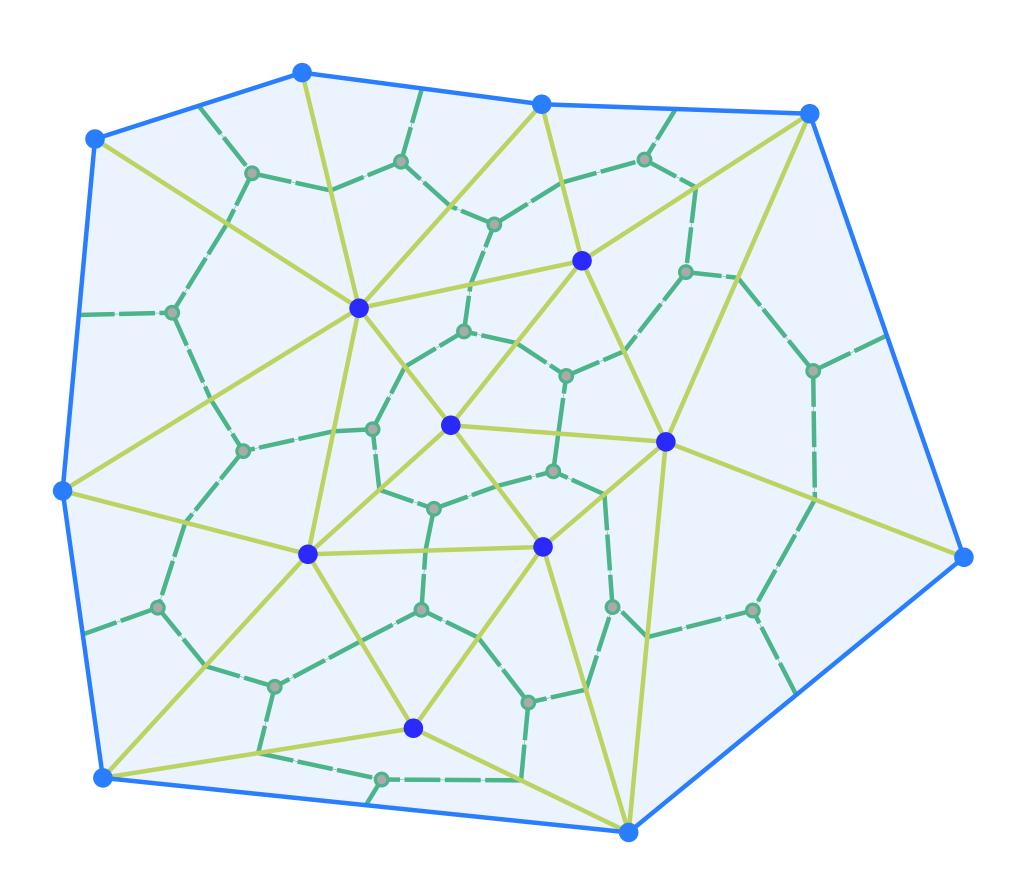
$$\tau_C/E = 0.5$$

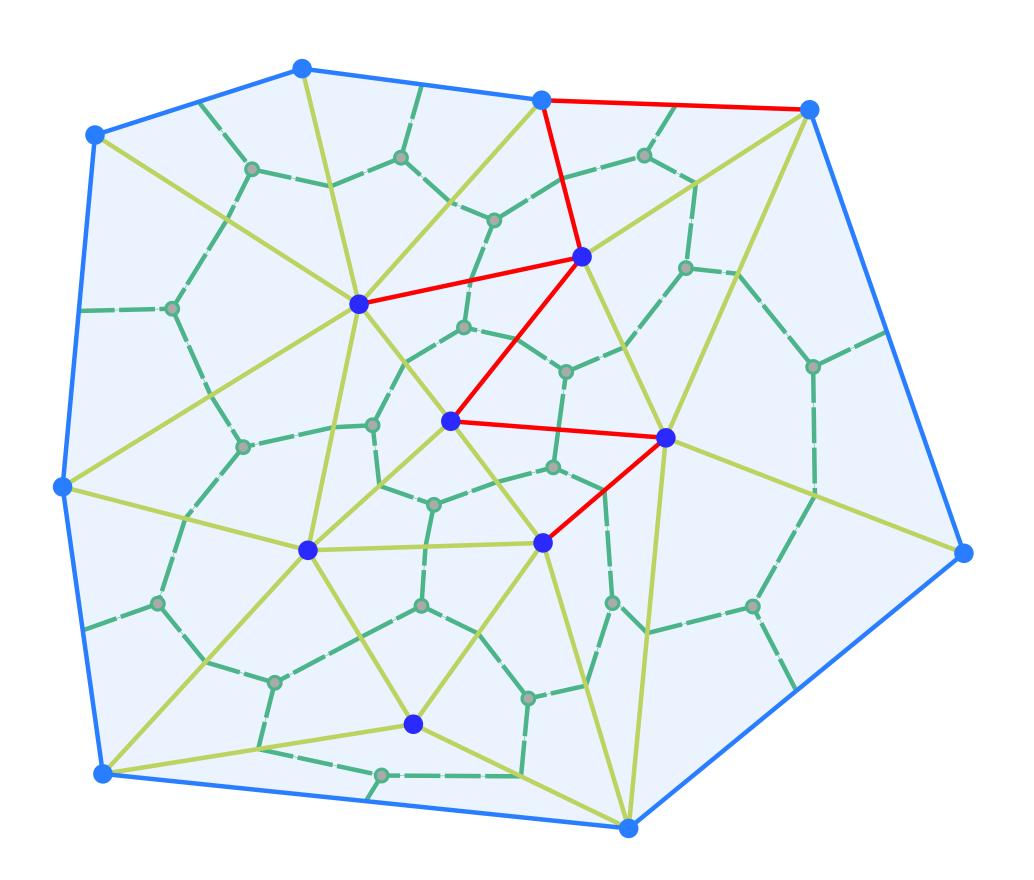


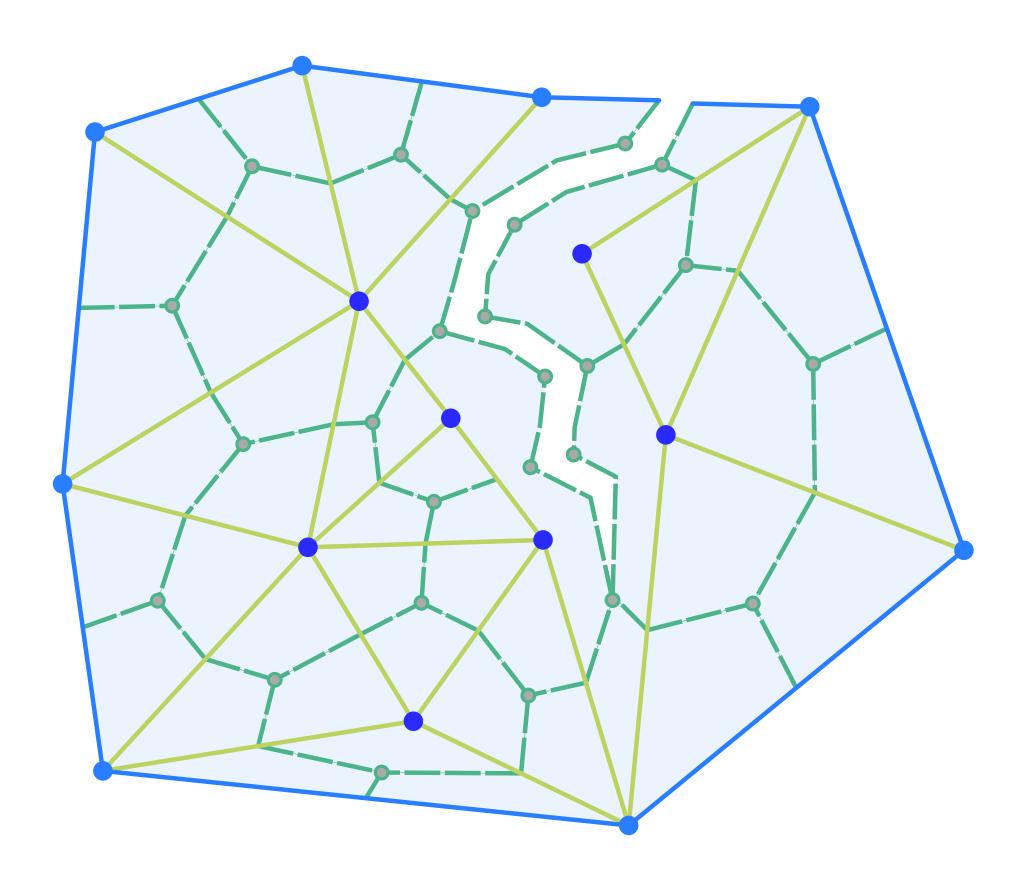
THREE STEPS OF CREATING FRACTURING MESH

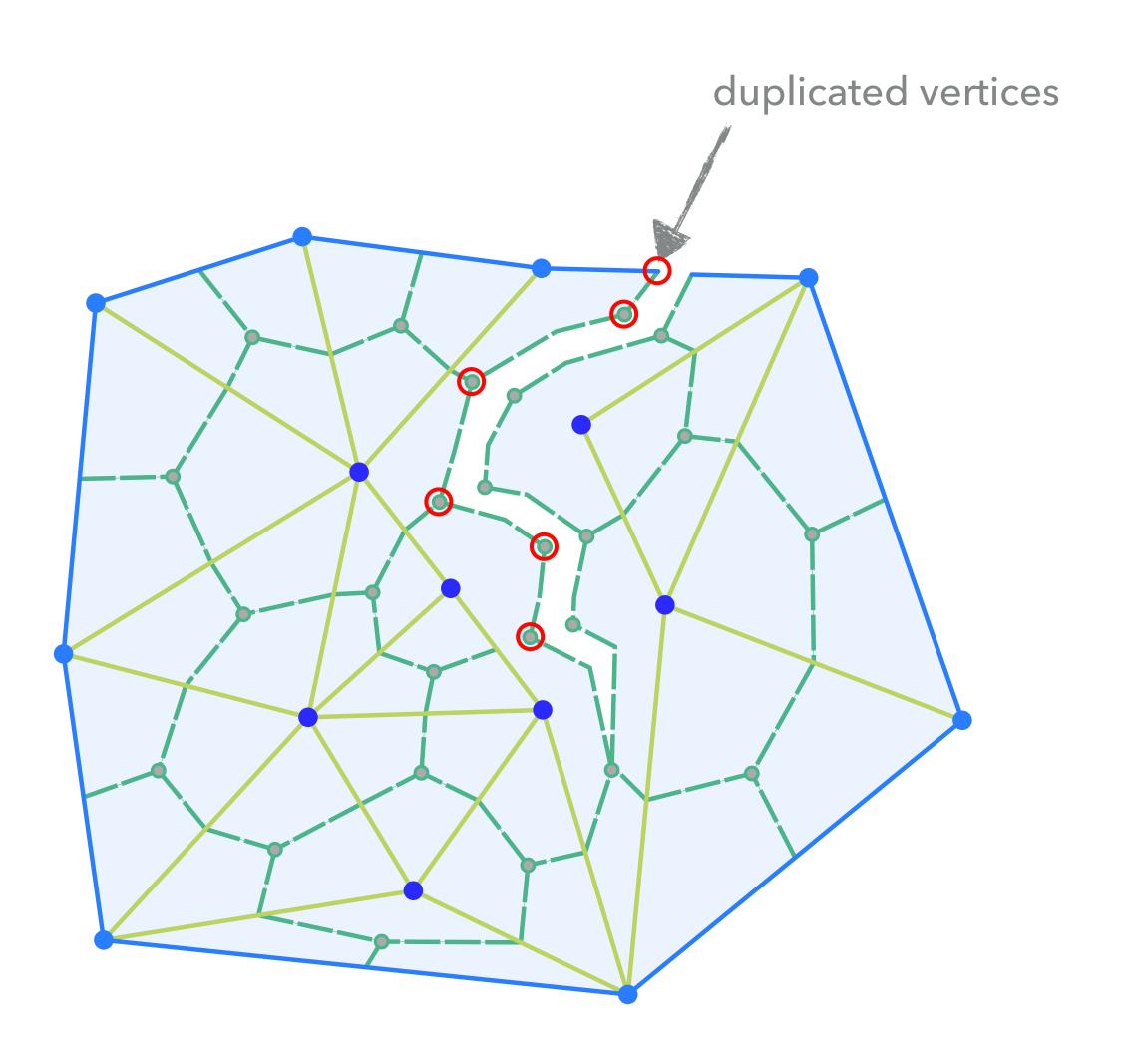
- Fracturing topology (that evolves with time)
- Extrapolate positions for the added vertices
- > Smoothing crack surface to reduce mesh-dependent noise
- Advantage: per-frame post-process instead of per-time-step treatment

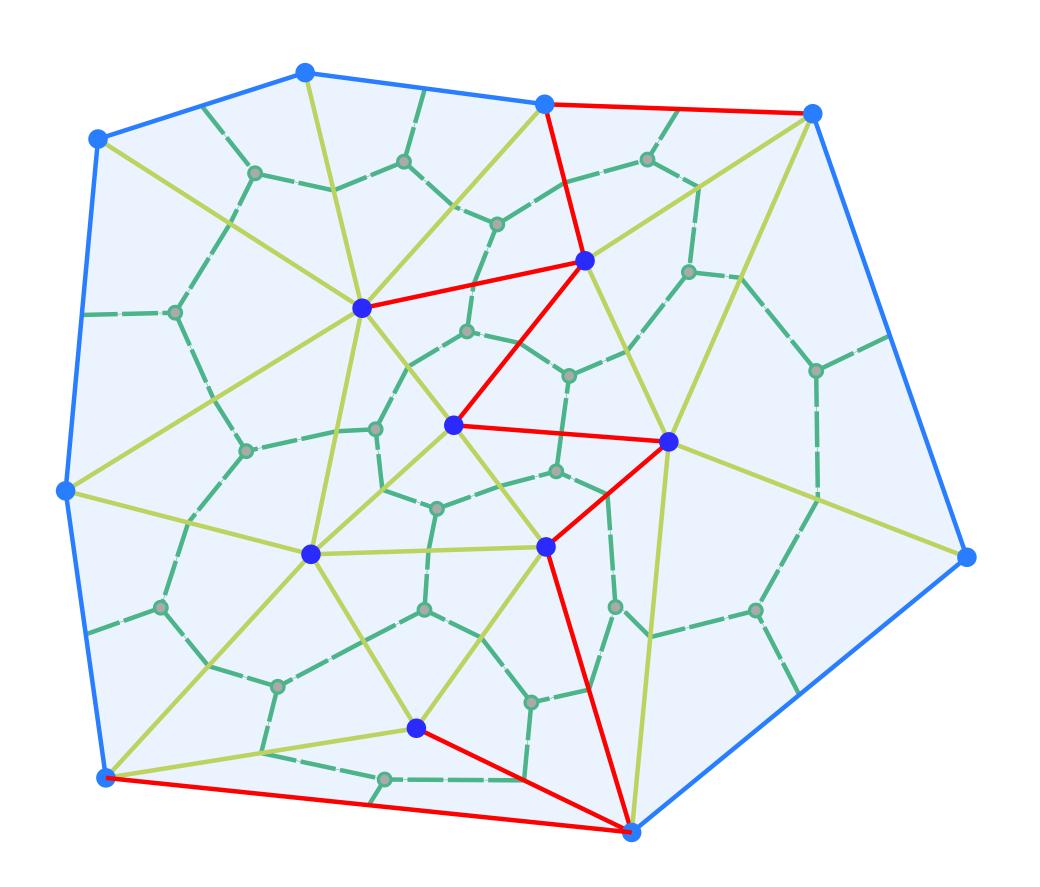


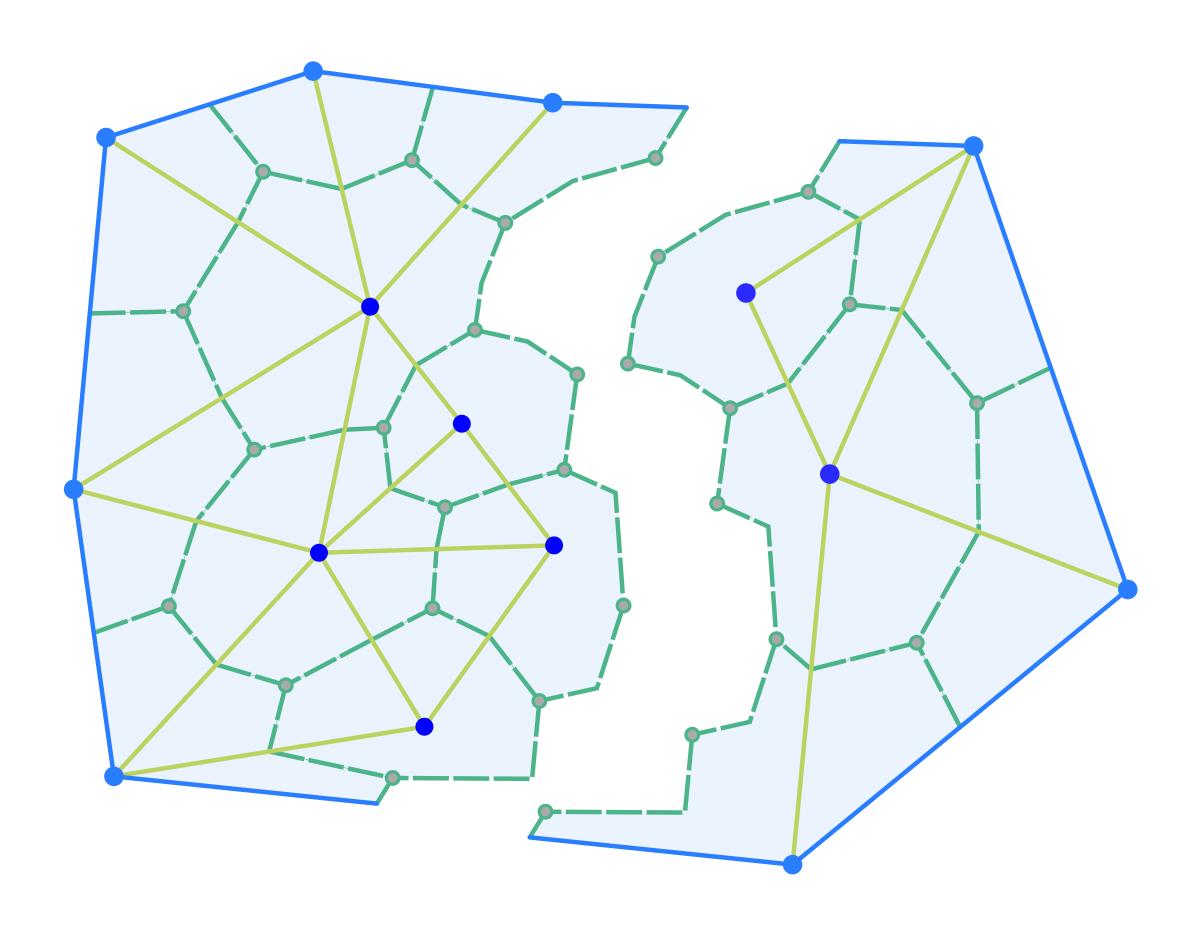




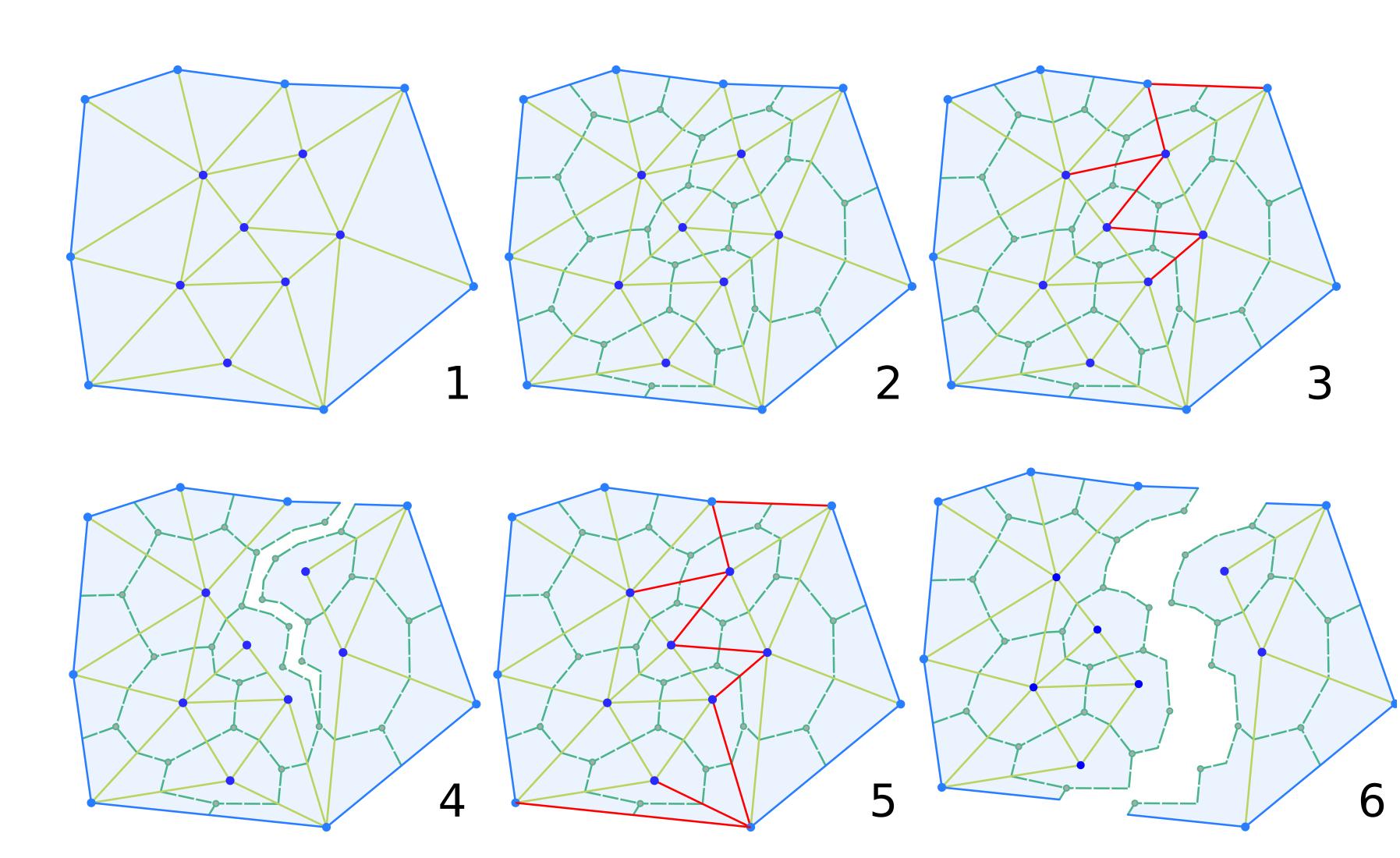


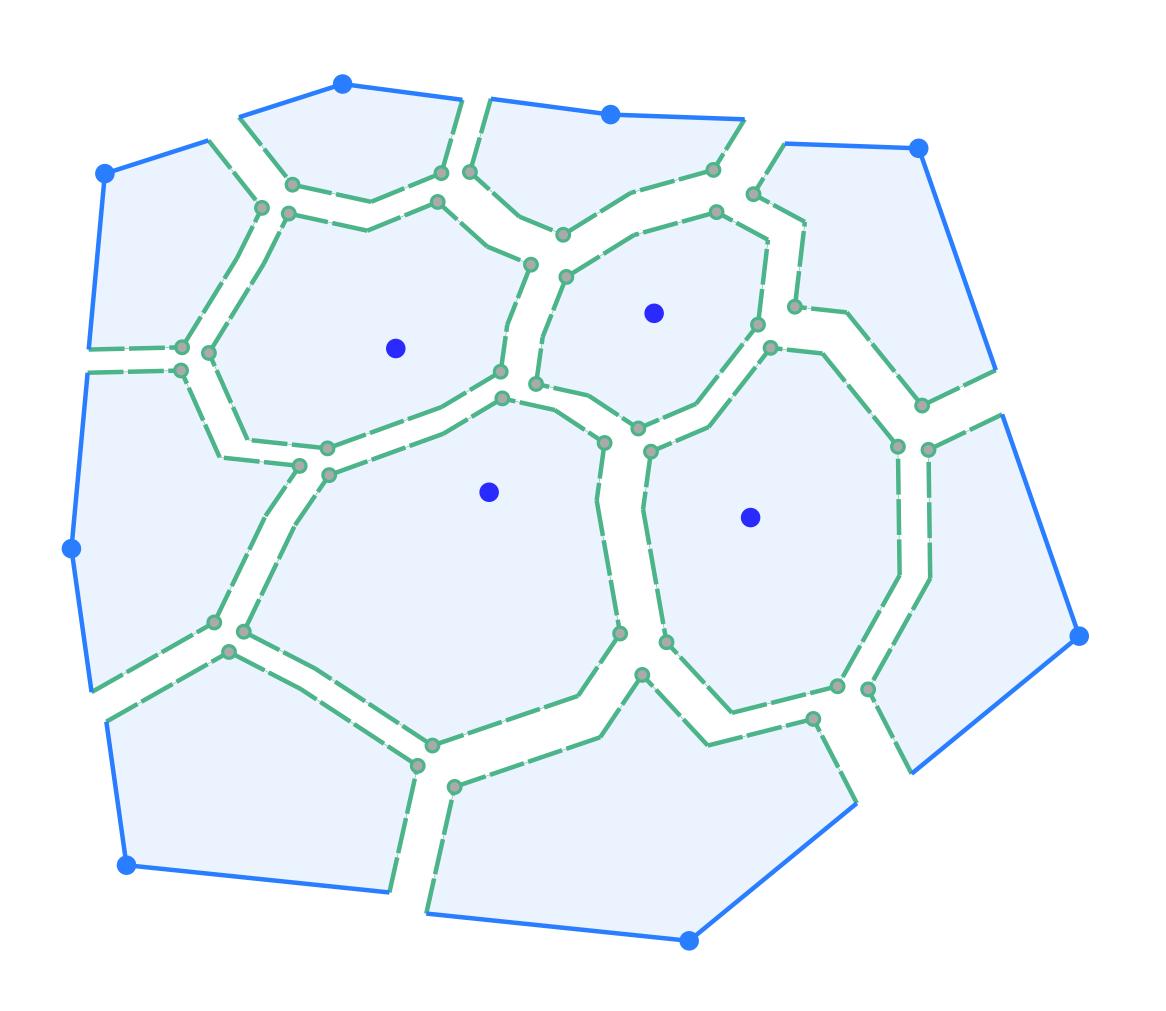


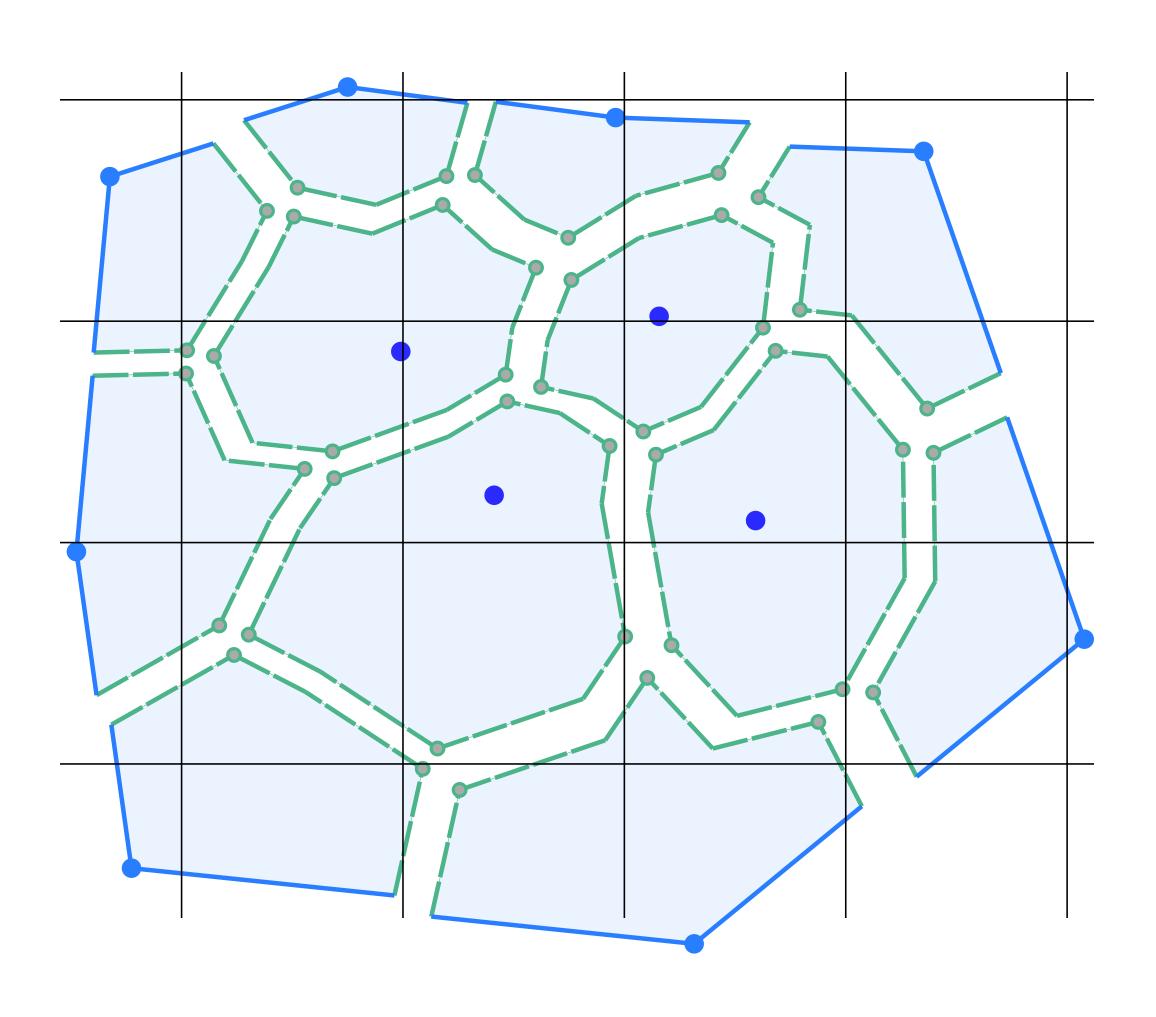


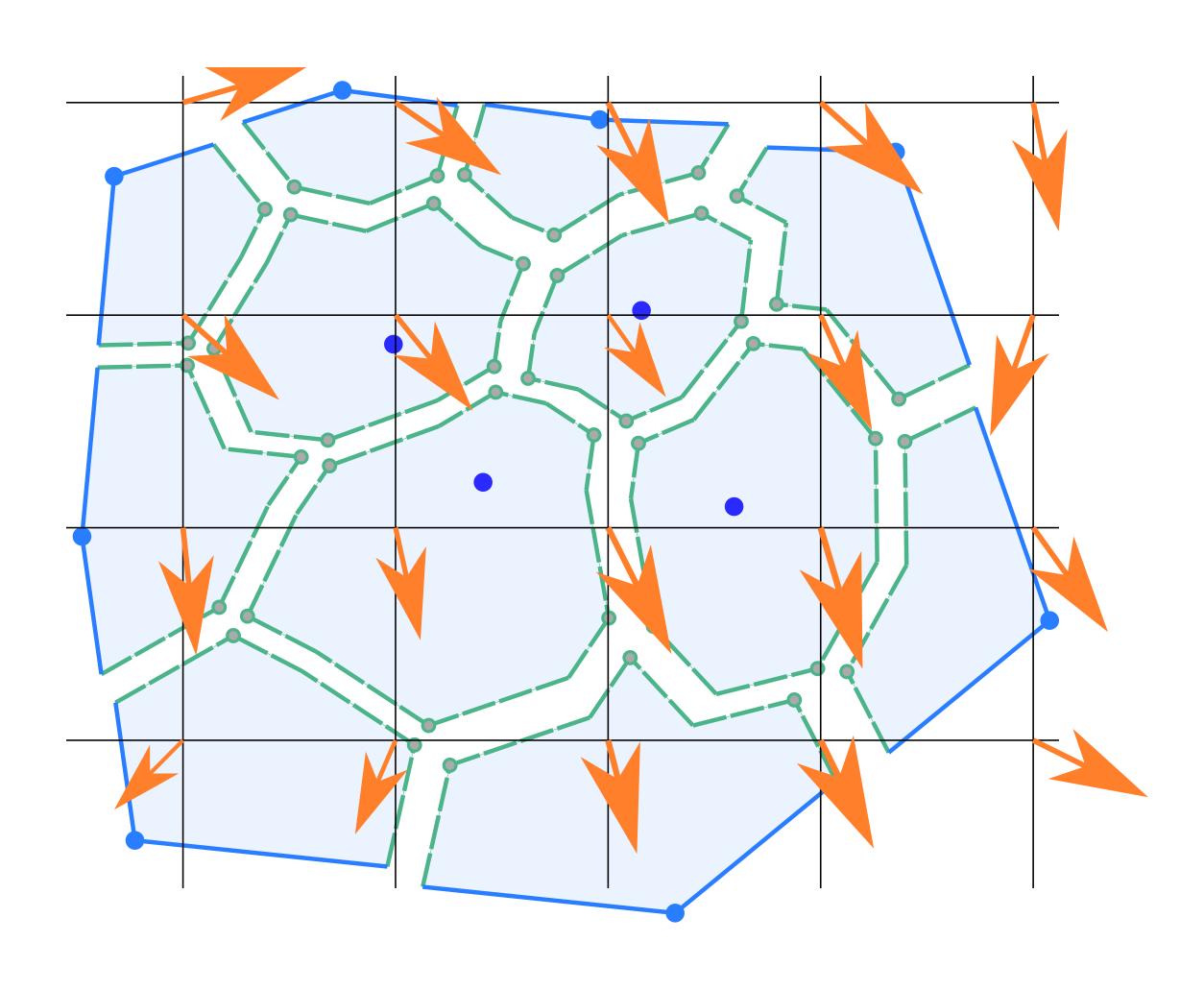


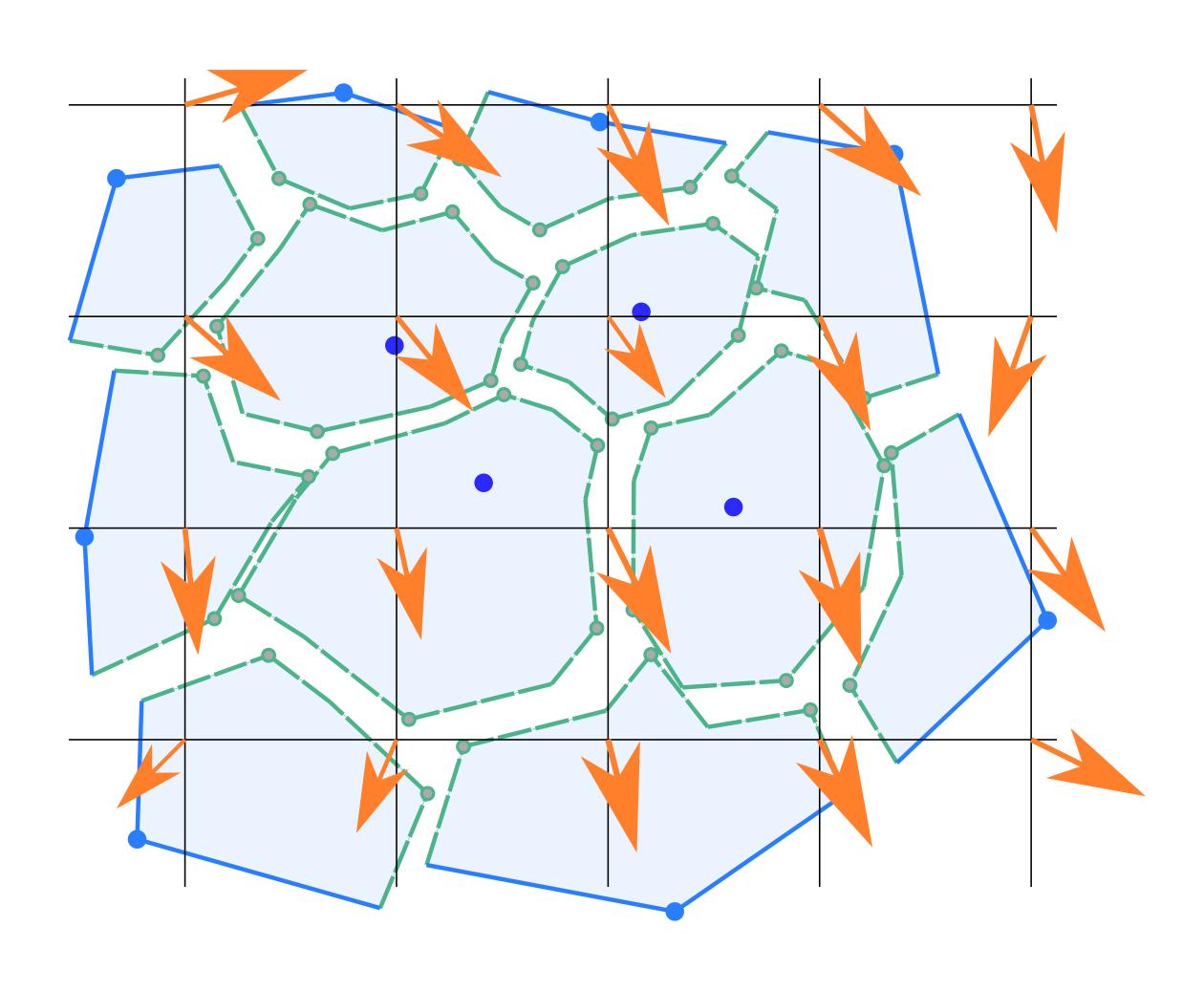
- Subdivided mesh
- Edge-stretching cutting criterion
- Evolves with time

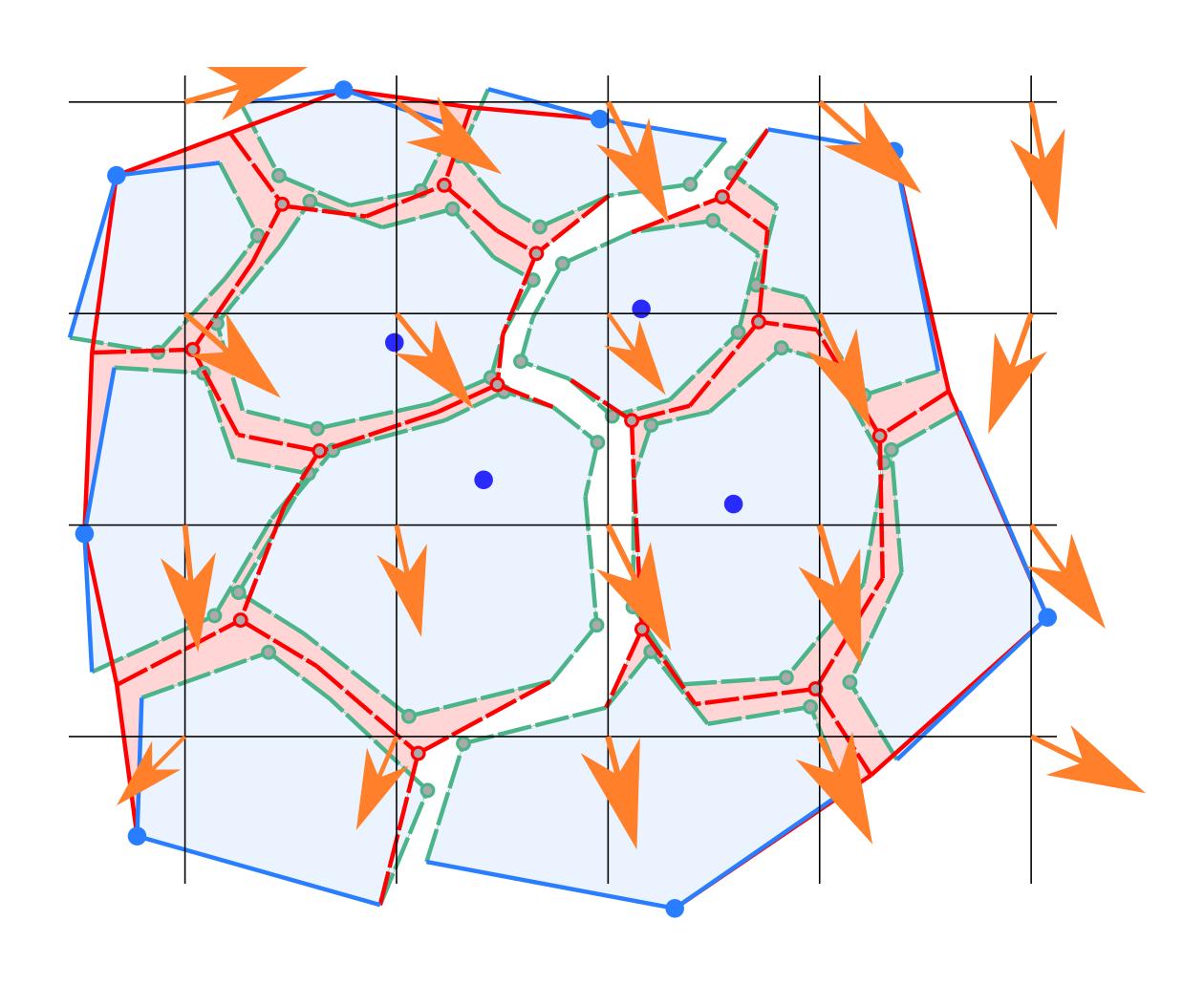


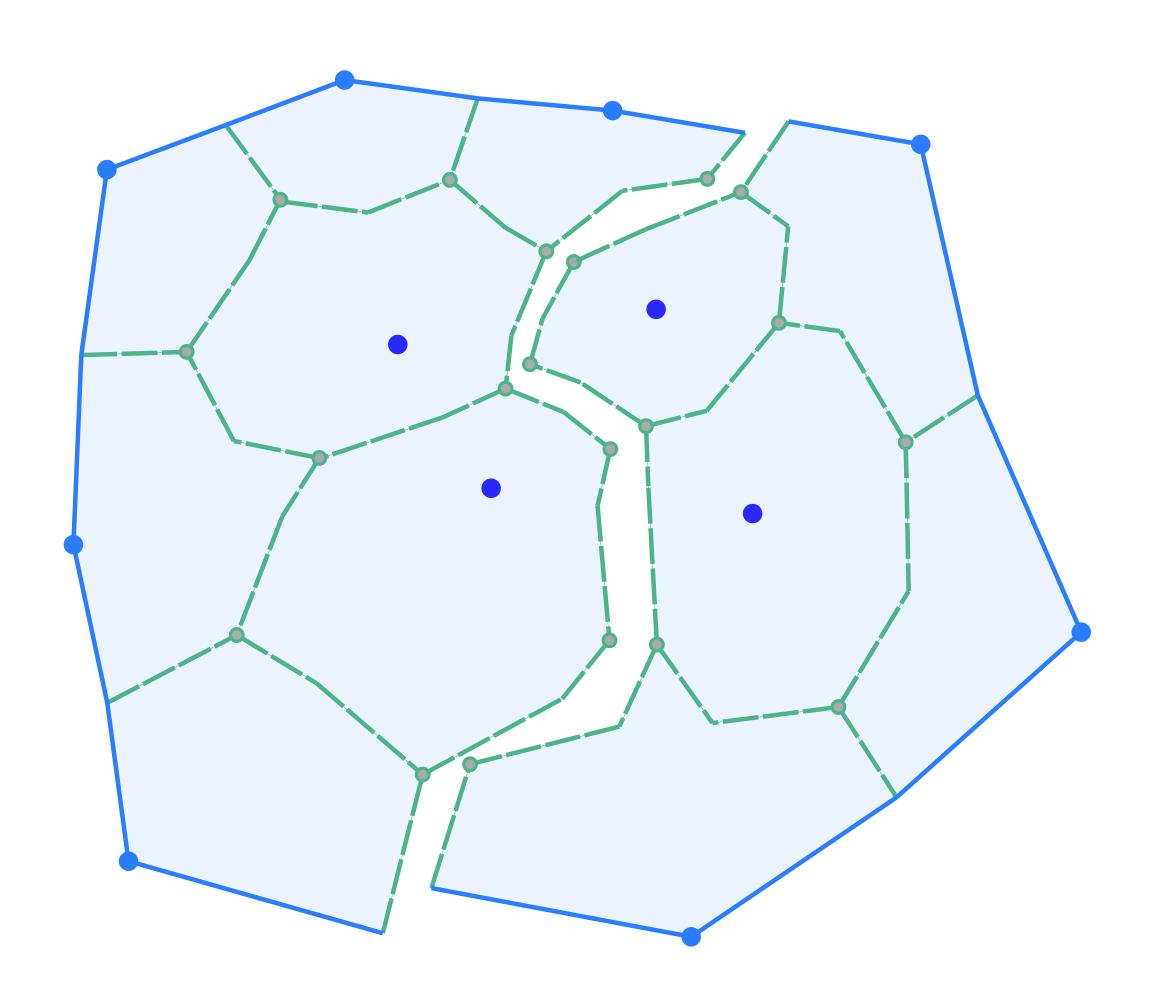




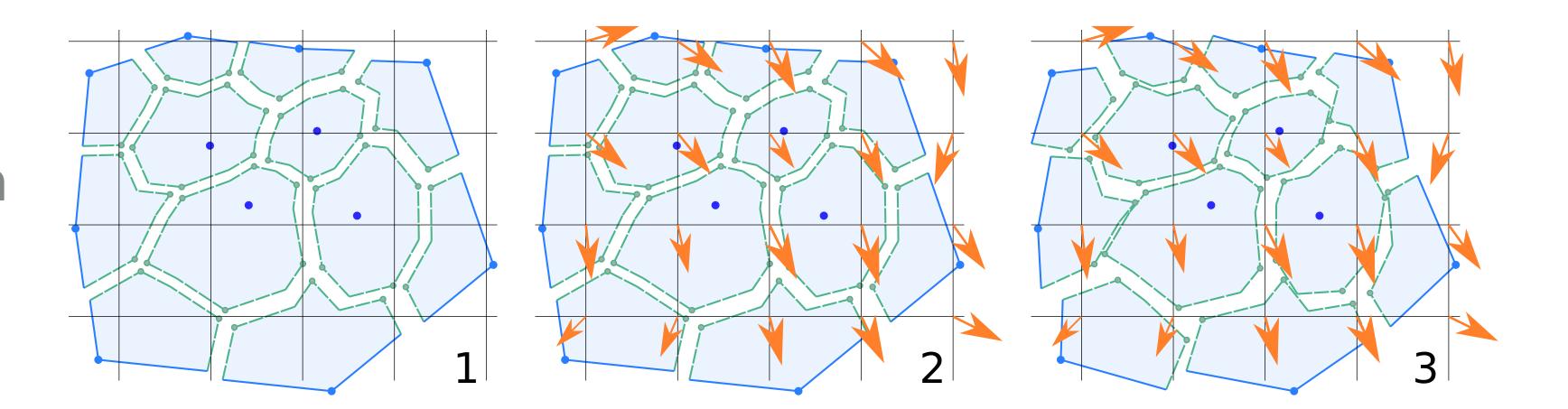


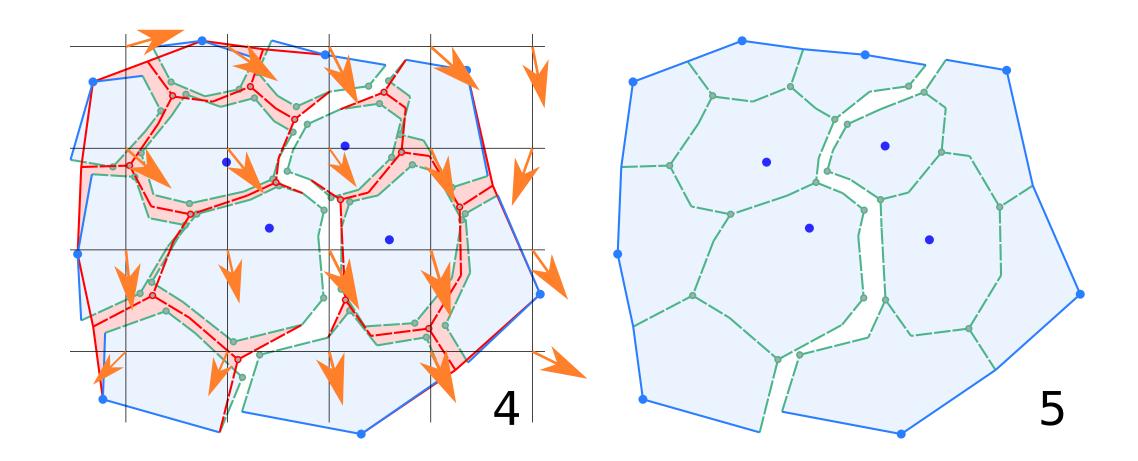




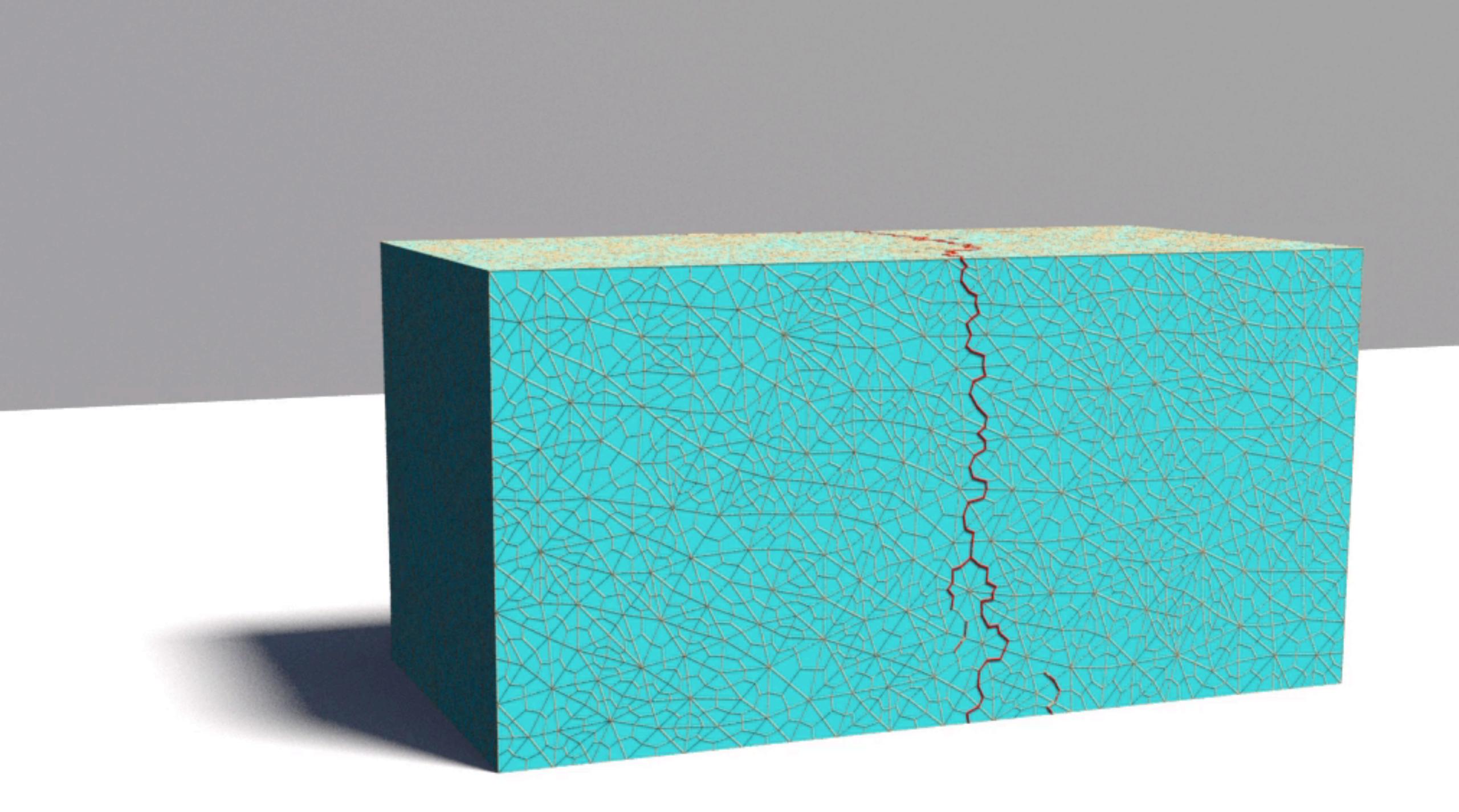


- Granular view
- Locally rigid motion
- Merging verticesbased on topology



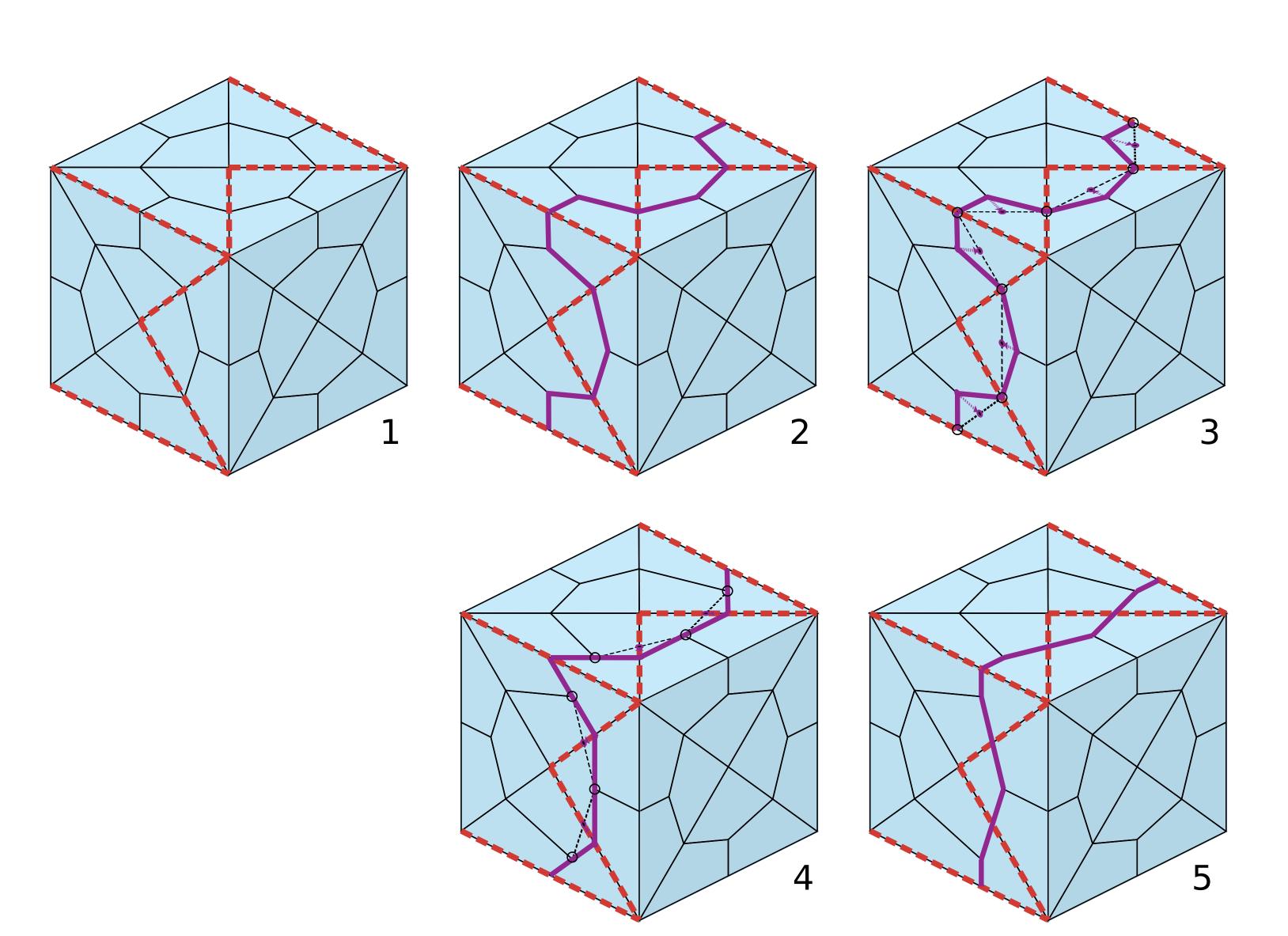


SMOOTHING CRACK SURFACE



SMOOTHING CRACK SURFACE

- Collect all ever broken edges
- Gauss-Siedel smoothing
- Smooth only the undeformed configuration



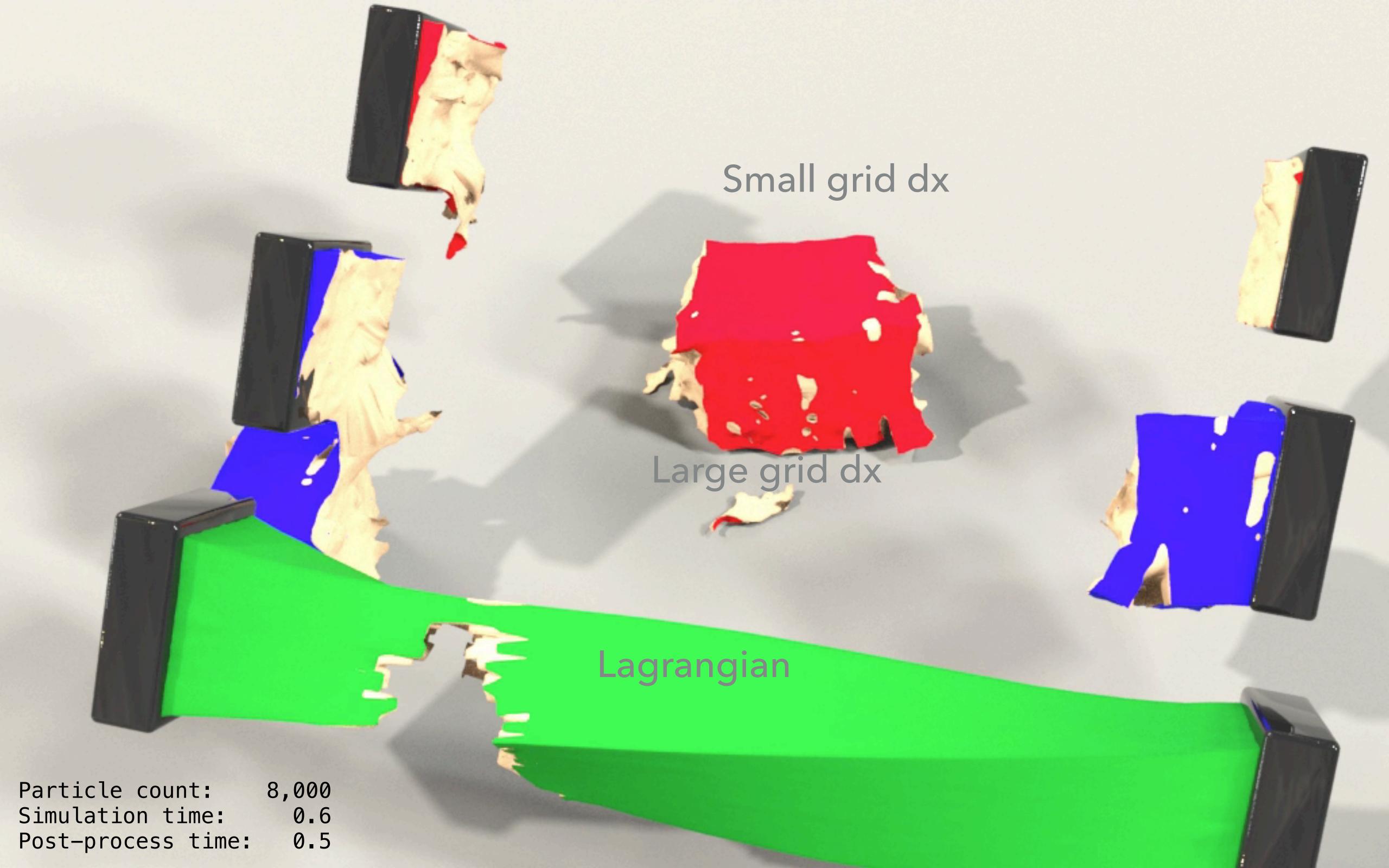
DISCUSSION

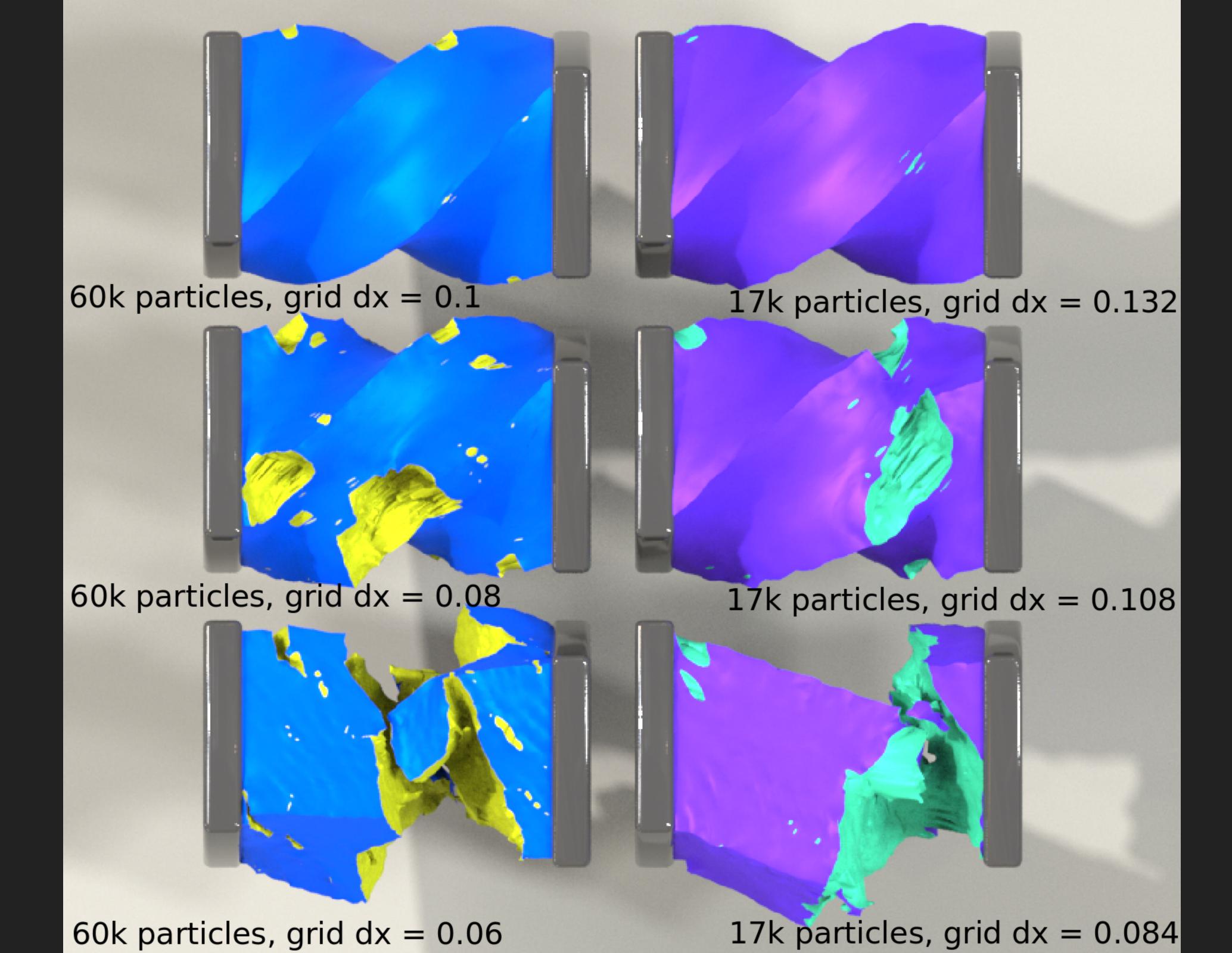
LIMITATIONS AND FUTURE DIRECTIONS

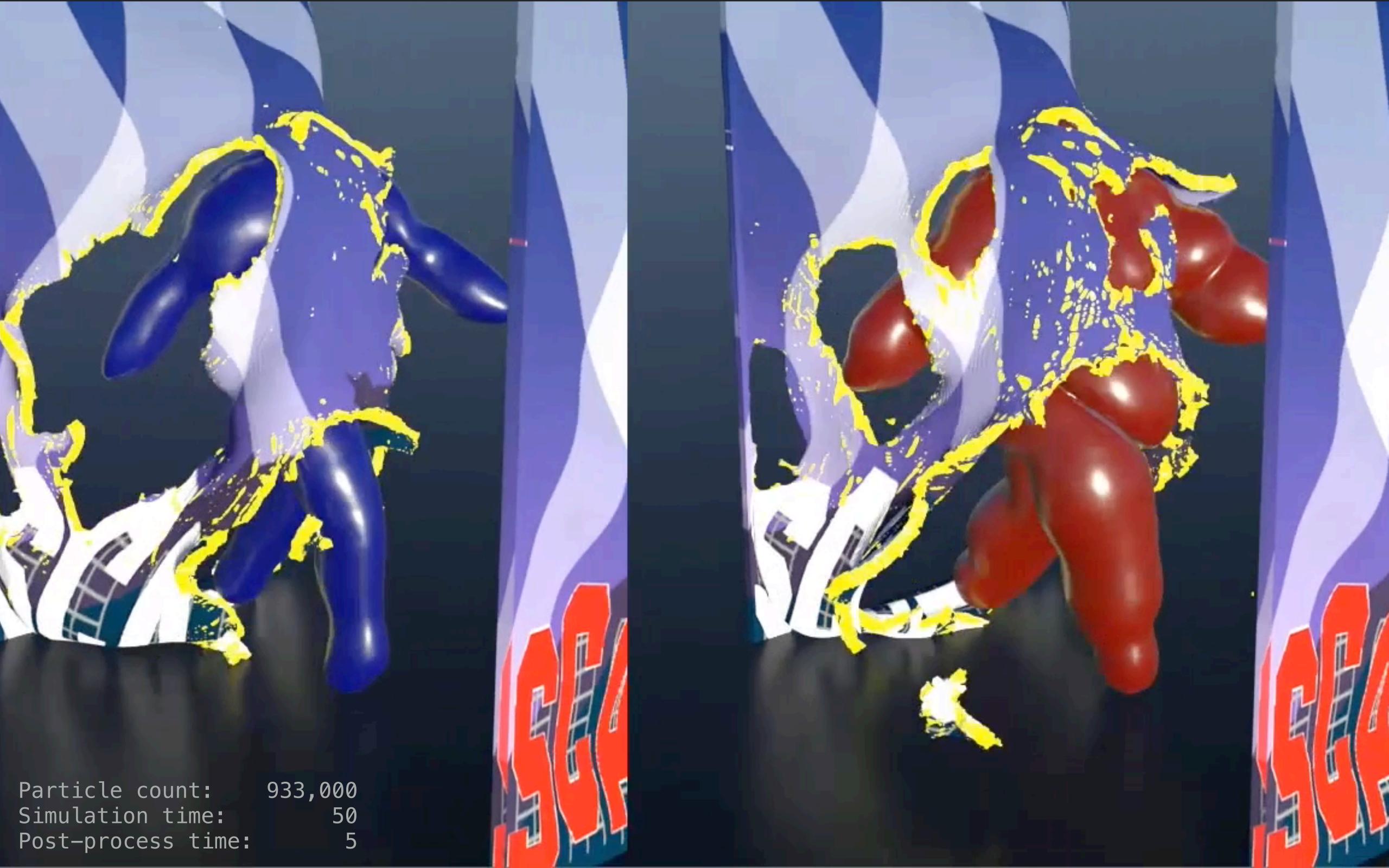
- Crack patterns can be affected by particle sampling density, mesh topology, grid resolution
- Finding appropriate parameters for edge-stretching threshold and crack smoothing iterations
- Exploring different yield surfaces and flow rules

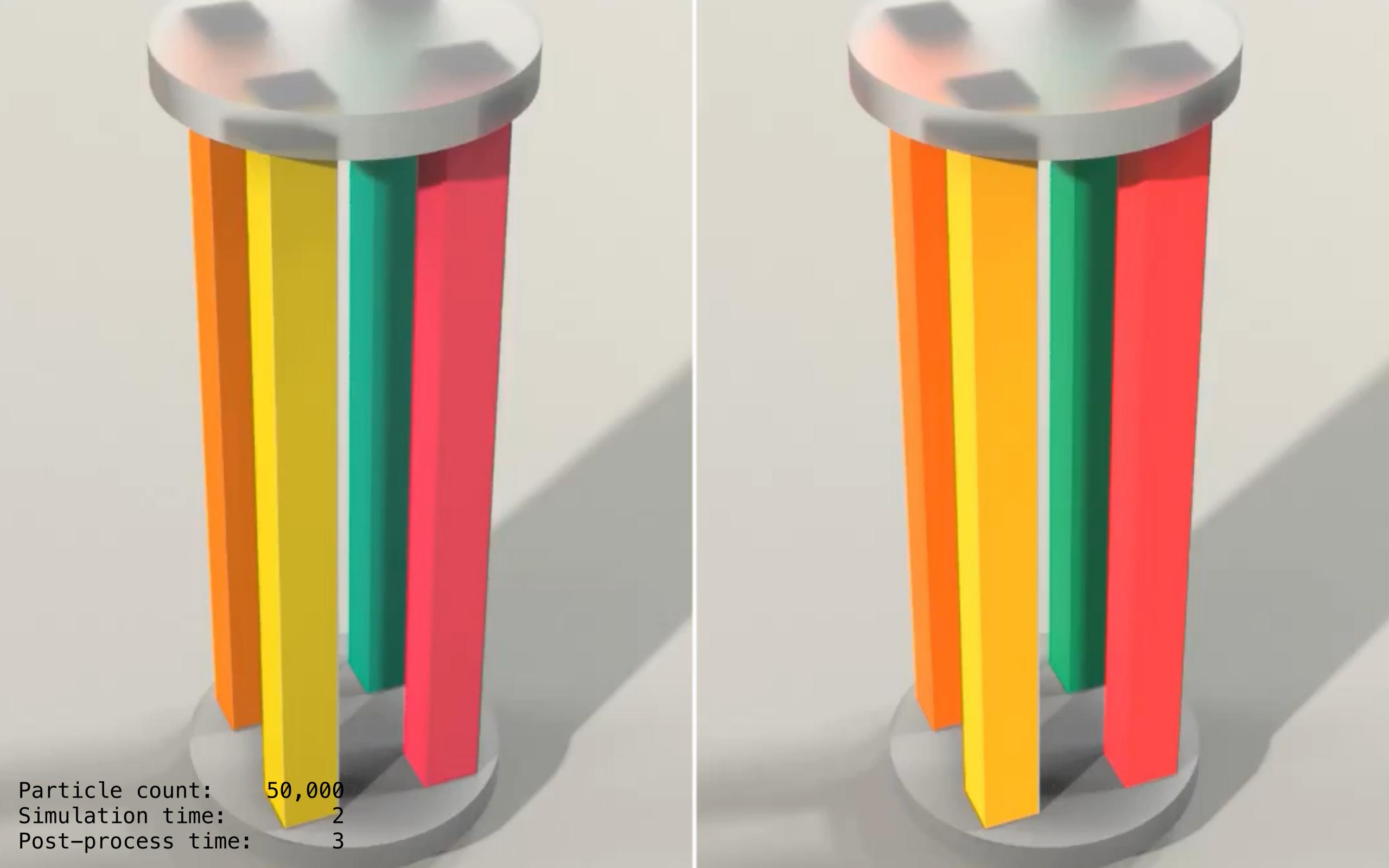
MESH V.S. PARTICLE

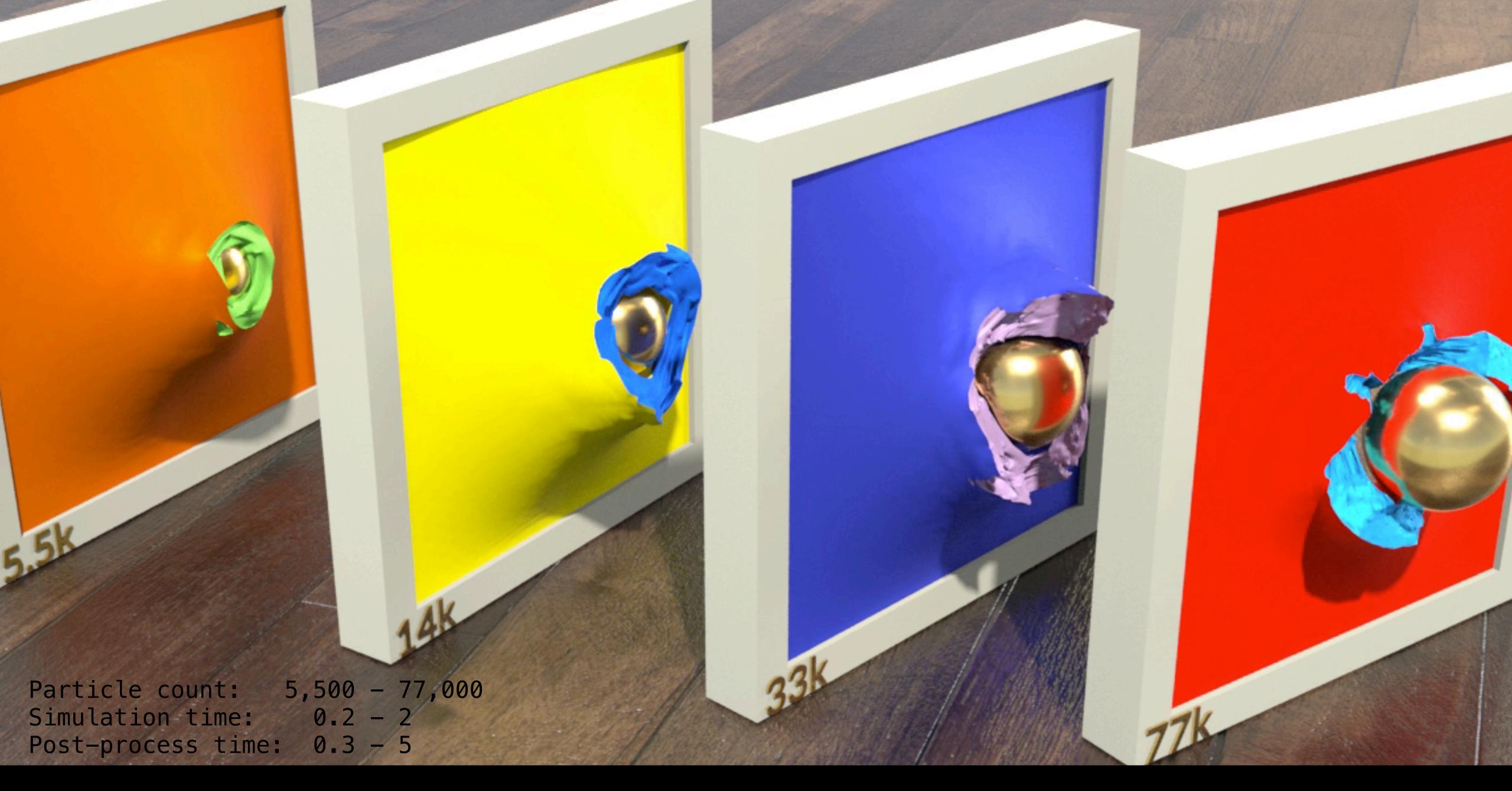
Particle-based forces (grid velocity updated F)	Mesh-based forces (mesh geometry updated F)
Delaunay mesh for visualization	requires quality mesh for simulation
has artificial fracture	no artificial fracture
6-8 particles per cell	2 particles per cell
automatic self-collision	
easy coupling with other MPM material	











ACKNOWLEDGEMENT

► The work is supported by NSF CCF-1422795, ONR (N000141110719, N000141210834), DOD (W81XWH15-1-0147), Intel STC-Visual Computing Grant (20112360) as well as a gift from Adobe Inc.